首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of elevated temperature on the activity of various components involved in protein synthesis was investigated in extracts from cultured Chinese hamster ovary cells. The translation of exogenous mRNA was markedly inhibited by preincubation of the extract for 15 to 20 minutes at 42°C. However, the following intermediary reactions were not affected, or only slightly inhibited, at 42°C: 1) the incorporation of Met-tRNAf into eIF-2·Met-tRNAf·GTP ternary complex; 2) the interaction of the ternary complex with 40S ribosomal subunits to form the 40S preinitiation intermediate; 3) the binding of mRNA and 60S subunits to form the 80S initiation complex; and 4) the reactions catalyzed by elongation factors EF-1 and EF-2. The activity of Met-tRNA synthetase was markedly inhibited, affecting the formation of initiator Met-tRNAf required for the initiation of protein synthesis and the translation of natural mRNA. Other aminoacyl-tRNA synthetases were not significantly affected by the elevated temperature.  相似文献   

2.
Infection of mouse L cells by vesicular stomatitis virus results in the inhibition of cellular protein synthesis. Lysates prepared from these infected cells are impaired in their ability to translate endogenous or exogenous cellular and viral mRNAs. The ability of initiation factors from rabbit reticulocytes to stimulate protein synthesis in these lysates was examined. Preparations of eukaryotic initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) stimulated protein synthesis strongly in L cell lysates from infected cells but only slightly in lysates from mock-infected cells. Maximal stimulation was obtained when a fraction containing eukaryotic initiation factors 4B (eIF-4B) and 4F (eIF-4F) was also present. In lysates from infected cells, these initiation factors increased endogenous cellular mRNA translation on the average 2-fold. In contrast, endogenous viral mRNA translation was increased to a much greater extent: the M protein was stimulated 8-fold, NS 5-fold, N 2.5-fold, and G 12-fold. When fractions containing eIF-4B, eIF-4F, or eIF-4A were added to these lysates in the presence of eIF-2, all three stimulated translation. Fractions containing rabbit reticulocyte initiation factors eIF-3 and eIF-6 had no effect on translation in either lysate. The results suggest that lysates from infected L cells are defective in the catalytic utilization of eIF-2 and deficient in mRNA binding protein activity.  相似文献   

3.
P1798 murine lymphosarcoma cells cease to proliferate upon exposure to 10(-7) M dexamethasone and exhibit a dramatic inhibition of rRNA and ribosomal protein synthesis (O. Meyuhas, E. Thompson, Jr., and R. P. Perry, Mol. Cell Biol. 7:2691-2699, 1987). These workers demonstrated that ribosomal protein synthesis is regulated primarily at the level of translation, since dexamethasone did not alter mRNA levels but shifted the mRNAs from active polysomes into inactive messenger ribonucleoproteins. We have examined the effects of dexamethasone on the biosynthesis of initiation factor proteins in the same cell line. The relative protein synthesis rates of eIF-4A and eIF-2 alpha were inhibited by about 70% by the hormone, a reduction comparable to that for ribosomal proteins. The mRNA levels of eIF-4A, eIF-4D, and eIF-2 alpha also were reduced by 60 to 70%, indicating that synthesis rates are proportional to mRNA concentrations. Analysis of polysome profiles showed that the average number of ribosomes per initiation factor polysome was only slightly reduced by dexamethasone, and little or no mRNA was present in messenger ribonucleoproteins. The results indicate that initiation factor gene expression is coordinately regulated with ribosomal protein synthesis but is controlled primarily by modulating mRNA levels rather than mRNA efficiency.  相似文献   

4.
Previous work by Browning et al. (Browning, K. S., Lax, S. R., Humphreys, J., Ravel, J. M., Jobling, S. A., and Gehrke, L. (1988) J. Biol. Chem. 263, 9630-9634) indicated that wheat germ extracts do not contain sufficient amounts of some of the protein synthesis initiation factors to obtain optimal translation of all mRNAs. In this investigation, a quantitative enzyme-linked immunosorbent assay was used to determine the amounts of eukaryotic initiation factors (eIF) 2, 3, 4A, 4F, and (iso)4F as well as the amounts of 40 S ribosomal subunits and elongation factors (EF) 1 alpha and 2 present in wheat germ extracts. EF-1 alpha is present in the highest amount (approximately 5% of the total protein), and eIF-4F is present in the lowest amount (approximately 0.03% of the total protein). The micromolar amounts of the factors and ribosomes are as follows: EF-1 alpha, 34; EF-2, 5.2; eIF-2, 1.5; eIF-3, 0.7; eIF-4A, 3.0, eIF-4F, 0.09; eIF-(iso)4F, 0.8; and 40 S ribosomal subunits, 3.2. The molar ratios of the factors to 40 S ribosomal subunits are approximately 11:1 for EF-1 alpha, 1.6:1 for EF-2, 0.45:1 for eIF-2, 0.2:1 for eIF-3, 0.9:1 for eIF-4A, 0.03:1 for eIF-4F, and 0.25:1 for eIF-(iso)4F. These findings strongly suggest that the concentrations of the initiation factors, particularly those factors required for the binding of mRNA to ribosomes, may play a major role in regulating the translation of mRNAs within the cell.  相似文献   

5.
The characteristics of cell-free translation systems prepared from unfertilized eggs and early cleavage stage embryos of the sea urchin, Strongylocentrotus purpuratus, closely reflect the developmentally regulated changes in protein synthesis initiation observed in vivo. Cell-free translation systems prepared over the first 0-6 h following fertilization show gradually increasing activities, mimicking the changes observed in vivo. The mechanisms underlying these increases are complex and occur at several levels. One factor contributing to the rise in protein synthetic rate is the gradual increase in eukaryotic initiation factor (eIF)-4 activity. This is correlated with the progressive inactivation of an inhibitor of eIF-4 function, which can be reactivated by in vitro manipulations. The relatively slow activation of eIF-4 follows similar kinetics to the increased utilization of maternal mRNA and ribosomes, in contrast to the rapid rise in maternal mRNA activation, and the increase in eIF-2B activity. This slow release from eIF-4 inhibition following a rapid release from eIF-2B inhibition and increased mRNA availability is reflected in the pattern of initiator tRNA binding to the small ribosomal subunit observed in cell-free translation systems. In translation systems from unfertilized eggs, initiator tRNA is unable to interact with the small ribosomal subunit, consistent with an initial block in both eIF-2B and eIF-4 activity. In translation systems from 30-min embryos, 48 S preinitiation complexes accumulate, reflecting the release from inhibition of mRNA availability and eIF-2B activity, but continued low activity of eIF-4. The accumulation of initiator tRNA in 48 S preinitiation complexes disappears gradually in translation systems from later embryos, as eIF-4 is slowly released from inhibition.  相似文献   

6.
We have purified seven protein factors from rabbit reticulocytes, all of which are presumed to be involved in the initiation of mammalian protein synthesis. They are termed eIF-1, eIF-2, eIF-3, eIF4A, eIF-4B, eIF-4C and e-IF-5. The purification from the KCl wash of crude ribosomes involves fractionation with ammonium sulphate, ion-exchange chromatography and separation by size. The operational definition of an initiation factor was its requirement for translation of natural messenger RNA (globin mRNA) in a highly purified and fractionated system using completely defined elongation components, i.e. aminoacyl-tRNA, the two elongation factors EF-1 and EF-2, and GTP. By the same criterion ATP was also shown to be required for initiation. The initiation factors were purified to homogeneity with the exception of eIF-4B, which was 60% to 70% pure. They were characterized physically by sucrose gradient centrifugation and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. With the exception of eIF-2 and eIF-3, they consist of single polypeptide chains ranging in molecular weight from 15,000 (eIF-1) to about 160,000 (eIF-5). The factor eIF-2 has three subunits of about 35,000, 50,000 and 55,000 molecular weight. The factor eIF-3 appears to be homogeneous as judged by gel electrophoresis in non-dissociating conditions and sedimentation analysis. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, however, reveals at least nine subunits ranging in molecular weight from about 35,000 to 160,000. Initiation complexes (mRNA · Met-tRNAf · 80 S ribosome), made in the presence of the seven initiation factors, ATP and GTP were isolated on a sucrose gradient and shown to be fully active in polypeptide chain elongation when supplied with aminoacyl-tRNA, the two elongation factors and GTP.  相似文献   

7.
The injection of heterologous mRNA into fully grown Xenopus oocytes results not only in the synthesis of the heterologous protein but also in a reciprocal decrease in the synthesis of endogenous proteins. This indicates that injected and endogenous mRNAs compete for some component which is rate-limiting for translation in oocytes. We have attempted to identify this rate-limiting translational component. We find that heterologous and homologous polysomes compete with endogenous mRNAs as effectively as naked mRNA, indicating that polysomes do not contain detectable levels of the rate-limiting factor. In addition, we have used micrococcal nuclease digestion and a mRNA-specific oligonucleotide to destroy the mRNA component of polysomes. The remaining polysome factors, when injected into oocytes, failed to stimulate translation. When several eukaryotic translation initiation factors were injected into oocytes, initiation factor 4A consistently increased general oocyte protein synthesis by about twofold. It is possible that the availability of eIF-4A in oocytes is a key factor in limiting the overall rate of protein synthesis.  相似文献   

8.
9.
Overview: mechanism of translation initiation in eukaryotes   总被引:1,自引:0,他引:1  
W C Merrick 《Enzyme》1990,44(1-4):7-16
Evidence to date has placed considerable emphasis on protein synthesis initiation as the dominant site of translational control. Two specific aspects are regulated, the binding of the initiator tRNA to the 40S subunits (as a ternary complex with eIF-2 and GTP) and the subsequent binding of mRNA to the complex of the 40S subunit with initiator tRNA. In addition to regulation, eIF-2 and Met-tRNAf are in large part responsible for selection of the initiating AUG codon. The utilization of most host mRNAs requires an m7G cap structure at the 5' end. However, many viral systems appear to use one of two alternate initiation schemes referred to as re-initiation and internal initiation. The function of specific initiation factors is presented and the consequences of altering the activity of these factors is discussed.  相似文献   

10.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   

11.
U A Bommer  G Lutsch  J Stahl  H Bielka 《Biochimie》1991,73(7-8):1007-1019
More than ten different protein factors are involved in initiation of protein synthesis in eukaryotes. For binding of initiator tRNA and mRNA to the 40S ribosomal subunit, the initiation factors eIF-2 and eIF-3 are particularly important. They consist of several different subunits and form stable complexes with the 40S ribosomal subunit. The location of eIF-2 and eIF-3 in these complexes as well as the interactions of the individual components have been analyzed by biochemical methods and electron microscopy. The results obtained are summarized in this article, and a model is derived describing the spatial arrangement of eIF-2 and eIF-3 together with initiator tRNA and mRNA on the 40S subunit. Conclusions on the location of functionally important sites of eukaryotic small ribosomal subunits are discussed with regard to the respective location of these sites in the prokaryotic counterpart.  相似文献   

12.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

13.
14.
Infection of mouse L-cell spinner cultures by vesicular stomatitis virus (VSV) effected the selective translation of viral mRNA by 4h after viral adsorption. Cell-free systems prepared from mock- and VSV-infected cells reflected this phenomenon; protein synthesis was reduced in the virus-infected cell lysate by approximately 75% compared with the mock-infected (control) lysate. This effect appeared to be specific to protein synthesis initiation since (i) methionine incorporation into protein from an exogenous preparation of initiator methionyl-tRNA gave completely analogous results and (ii) the addition of a ribosomal salt wash (containing protein synthesis initiation factors) stimulated protein synthesis by the infected cell lysate but had no effect on protein synthesis by the control. Micrococcal nuclease-treated (initiation-dependent) VSV-infected cell lysates were not able to translate L-cell mRNA unless they were supplemented with a ribosomal salt wash; a salt wash from ribosomes from uninfected cells effected a quicker recovery than a salt wash from ribosomes from infected cells. When salt wash preparations from ribosomes from uninfected and infected cells were tested for initiation factor 2 (eIF-2)-dependent ternary complex capacity with added GTP and initiator methionyl-tRNA, we found that the two preparations contained equivalent levels of eIF-2. However, initiation complex formation by the factor from virus-infected cells proceeded at a reduced initial rate compared with the control. When the lysates were supplemented with a partially purified eIF-2 preparation, recovery of activity by the infected cell lysate was observed. Mechanisms by which downward regulation of eIF-2 activity might direct the selective translation of viral mRNA in VSV-infected cells are proposed.  相似文献   

15.
We used the chemical reagents dimethylsulfate and 4'-aminomethyl-4,5',8-trimethylpsoralen and the enzyme T1 ribonuclease to compare the 5'-end structure of ovalbumin mRNA in situ in purified hen oviduct nuclei and polysomes with that of the isolated mRNA. The qualitative pattern of structure-dependent base modifications and T1 ribonuclease cleavage sites in intranuclear and polysomal ovalbumin mRNAs was found to be nearly identical to those in isolated ovalbumin mRNA. These structural data are consistent with the presence of a trigonal stem-loop structure at the 5'-end of ovalbumin mRNA (hairpin-1) in nuclei and polysomes. Similar results were obtained for a coding region structure (hairpin-3) in intranuclear ovalbumin mRNA. We have recently shown that hairpin-1 positively affects the rate of ovalbumin mRNA translation in vitro and is part of a high affinity binding site for eucaryotic initiation factor-2 (eIF-2). The presence of hairpin-1 in ovalbumin mRNA in both a pretranslation state (nuclei) and active translation state (polysomes) is consistent with its hypothesized biological function as an intracellular initiation signal that facilitates the translation of this mRNA.  相似文献   

16.
Translation of globin mRNA in a micrococcal nuclease-treated reticulocyte lysate was studied in the presence of increasing amounts of Mengovirus RNA, under conditions in which the number of translation initiation events remains constant as judged by the transfer of label from N-formyl[35S]methionyl-tRNAf into protein. The translation of globin mRNA is progressively inhibited by low concentrations of Mengovirus RNA, free of detectable traces of double-stranded RNA, concomitant with the increasing synthesis of Mengovirus RNA-directed products. On a molar basis, Mengovirus RNA apparently competes about 35 times more effectively than globin mRNA for a critical component in translation. The competition is relieved by the addition of highly purified eukaryotic initiation factor 2 (eIF-2). Addition of eIF-2 does not stimulate overall protein synthesis, but shifts it in favor of globin synthesis. No stimulation of globin mRNA translation by eIF-2 is seen when Mengovirus RNA is absent. These experiments show that Mengovirus RNA competes, directly or indirectly, with globin mRNA for eIF-2. In direct binding experiments using isolated mRNA and eIF-2, Mengovirus RNA is shown to compete with globin mRNA for eIF-2 and to exhibit a 30-fold higher affinity for this factor. The binding of Mengovirus RNA to eIF-2 is much more resistant to increasing salt concentrations than is the binding of globin mRNA, again reflecting its high affinity. These results reveal a direct correlation between the ability of these mRNA species to compete in translation and their ability to bind to initiation factor eIF-2. They suggest that the affinity of a given mRNA species for eIF-2 is essential in determining its translation, relative to that of other mRNA species. Messenger RNA competition for eIF-2 may contribute significantly to the selective translation of viral RNA in infected cells.  相似文献   

17.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

18.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

19.
One of the factors involved in the postfertilization activation of protein synthesis in the sea urchin, Strongylocentrotus purpuratus, is the activation of eIF-2B, the initiation factor responsible for guanine nucleotide exchange on eIF-2. Cell-free translation systems from unfertilized eggs are stimulated by added eIF-2B, although this dependency is rapidly lost in translation systems prepared at various times following fertilization. Cell-free translation systems prepared from unfertilized eggs show significantly lower eIF-2B activities than those prepared from 2-h embryos. However, the provision of an NADPH regeneration system significantly stimulates eIF-2B activity in egg extracts and, in addition, stimulates both binding of initiator tRNA to the small ribosomal subunit and protein synthetic activity. These data suggest that the activation of eIF-2B following fertilization reflects the fertilization-induced increase in NADPH levels.  相似文献   

20.
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号