首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently dynein light chain 1 (DLC1), a cytoskeleton signaling component, has been shown to interact with and transactivate estrogen receptor-alpha (ER), leading to increased expression of ER target genes and growth stimulation of breast cancer cells. However, the molecular mechanism by which DLC1 regulates the ER pathway remains poorly understood. To gain insights into the putative mechanism, here we set out to identify novel DLC1-interacting proteins. We identified KIBRA, a WW domain- and a glutamic acid stretch-containing protein, as a DLC1-binding protein and showed that it interacts with DLC1 both in vitro and in vivo. We found that KIBRA-DLC1 complex is recruited to ER-responsive promoters. We also found that KIBRA-DLC1 interaction is mandatory for the recruitment and transactivation functions of ER or DLC1 to the target chromatin. Finally we found that KIBRA interacts with histone H3 via its glutamic acid-rich region and that such interaction might play a mechanistic role in conferring an optimal ER transactivation function as well as the proliferation of ligand-stimulated breast cancer cells. Together these findings indicate that DLC1-KIBRA interaction is essential for ER transactivation in breast cancer cells.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Aromatase inhibitors (AI) have improved the treatment of oestrogen receptor positive (ER+) breast cancer. Despite the efficacy of these agents over 40% of patients relapse with endocrine resistant disease. Here we describe an in vitro model of acquired resistance to long-term oestrogen deprivation (LTED). The LTED cells retain expression of the ER and appear hypersensitive to oestrogen as a result of altered kinase activity. Furthermore analysis of temporal changes in gene expression during the acquisition of resistance highlight growth factor receptor pathways as key mediators of this adaptive process.  相似文献   

11.
Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF‐7 breast cancer cells. However, the same results are unable to be repeated in MDA‐MB‐231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα‐positive cancer cells, whereas ERα‐negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti‐oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF‐7 cells, but not in MDA‐MB‐231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin‐like growth factor 1 (IGF‐1) was antagonized by CPT, but other molecules of IGF‐1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K) were negatively affected. Finally, the MCF‐7 cells transfected with shERα for silencing ERα show resistant to CPT, and p‐AKT, phosphorylation of p70 S6 kinase 1 (p‐S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E‐BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti‐oestrogen agent and a natural adjuvant for application in endocrine resistance therapy.  相似文献   

12.
The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka’s nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E2. Because E2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.  相似文献   

13.
Background information. The common phenotypes of cancer and stem cells suggest that cancers arise from stem cells. Oestrogen is one of the few most important determinants of breast cancer, as shown by several lines of convincing evidence. We have previously reported a human breast epithelial cell type (Type 1 HBEC) with stem cell characteristics and ERα (oestrogen receptor α) expression. A tumorigenic cell line, M13SV1R2, was developed from this cell type after SV40 (simian virus 40) large T‐antigen transfection and X‐ray irradiation. The cell line, however, was not responsive to oestrogen for cell growth or tumour development. In the present study, we tested the hypothesis that deprivation of growth factors and hormones may change the tumorigenicity and oestrogen response of this cell line. Results. The M13SV1R2 cells lost their tumorigenicity after culturing in a growth factor/hormone‐deprived medium for >10 passages (referred to as R2d cells) concomitant with the expression of two tumour suppressor genes, namely those coding for maspin and α6 integrin. However, these cells acquired oestrogen responsiveness in cell growth and tumour development. By immunocytochemistry, Western blotting and flow cytometry analysis, oestrogen treatment of R2d cells was found to induce many important effects related to breast carcinogenesis, namely: (i) the emergence of a subpopulation of cells expressing CD44+/high/CD24?/low breast tumour stem cell markers; (ii) the induction of EMT (epithelial‐to‐mesenchymal transition); (iii) the acquisition of metastatic ability; and (iv) the expression of COX‐2 (cyclo‐oxygenase‐2) through a CD44‐mediated mechanism. Conclusion. An oestrogen‐responsive cell line with ERα and CD44+/CD24?/low expression can be derived from breast epithelial stem cells. The tumorigenicity and oestrogen response of these cells could depend on the cell culture conditions. The findings of this study have implications in regard to the origins of (1) ERα‐positive breast cancers, (2) CD44+/CD24?/low breast tumour stem cells and (3) the metastatic ability of breast cancer.  相似文献   

14.
Estrogens, acting through estrogen receptor α (ERα), stimulate breast cancer proliferation, making ERα an attractive drug target. Since 384-well format screens for inhibitors of proliferation can be challenging for some cells, inhibition of luciferase-based reporters is often used as a surrogate end point. To identify novel small-molecule inhibitors of 17β-estradiol (E(2))-ERα-stimulated cell proliferation, we established a cell-based screen for inhibitors of E(2)-ERα induction of an estrogen response element (ERE)(3)-luciferase reporter. Seventy-five "hits" were evaluated in tiered follow-up assays to identify where hits failed to progress and evaluate their effectiveness as inhibitors of E(2)-ERα-induced proliferation of breast cancer cells. Only 8 of 75 hits from the luciferase screen inhibited estrogen-induced proliferation of ERα-positive MCF-7 and T47D cells but not control ERα-negative MDA-MB-231 cells. Although 12% of compounds inhibited E(2)-ERα-stimulated proliferation in only one of the ERα-positive cell lines, 40% of compounds were toxic and inhibited growth of all the cell lines, and ~37% exhibited little or no ability to inhibit E(2)-ERα-stimulated cell proliferation. Representative compounds were evaluated in more detail, and a lead ERα inhibitor was identified.  相似文献   

15.
16.
Currently there is much interest in the role that growth factors may play in the development of human breast tumours. We have shown previously that growth factors secreted by breast tumours may influence the activity of oestradiol hydroxysteroid dehydrogenase, the enzyme which catalyses the interconversion of oestrone (E1) and oestradiol. As the formation of E1 from its sulphate (E1S) by oestrone sulphatase may be quantitatively more important than production from androstenedione via aromatase, we have studied the effect of insulin-like growth factor-1 (IGF-I) and basic fibroblast growth factor (bFGF) on oestrone sulphatase activity in the hormone-dependent MCF-7 and the hormone-independent MDA-MB-231 breast cancer cell lines. In both these cell types, bFGF (1–200 ng/ml) and IGF-I (25–200 ng/ml) significantly stimulated oestrone sulphatase activity in a dose-dependent manner (by 8–60%) after 48 h. Additionally, cycloheximide significantly inhibited (by 90–120%) this stimulation of oestrone sulphatase activity by the two growth factors in both MCF-7 and MDA-MB-231 cells. Basal oestrone sulphatase activity was higher in the oestrogen receptor, ER - ve MDA-MB-231 cells than in the ER + ve MCF-7 breast cancer cells. We conclude that these growth factors, believed to be secreted by breast tumours, may induce enzymes of oestrogen synthesis and hence increase local production of oestrogens.  相似文献   

17.
18.
The growth dependence of many breast cancers on oestrogen has been exploited therapeutically by oestrogen deprivation, but almost all patients eventually develop resistance largely by unknown mechanisms. Wild-type (WT) MCF-7 cells were cultured in oestrogen-deficient medium for 90 weeks in order to establish a long-term oestrogen-deprived MCF-7 (LTED) which eventually became independent of exogenous oestrogen for growth. After 15 weeks of quiescence (LTED-Q), basal growth rate increased in parallel with increasing oestrogen sensitivity. While 10−9 M oestradiol (E2) maximally stimulated WT growth, the hypersensitive LTED (LTED-H) were maximally growth stimulated by 10−13 M E2. By week 50, hypersensitivity was apparently lost and the cells became oestrogen independent (LTED-I), although the pure antioestrogen ICI182780 still inhibited cell growth and reversed the inhibitory effect of 10−9 M E2 at 10−12 to 10−7 M. Tamoxifen (10−7 to 10−6 M) had a partial agonist effect on WT, but had no stimulatory effect on LTED. Whilst LTED cells have a low progesterone receptor (PgR) expression in all phases, oestrogen receptor (ER) a expression was, on average, elevated five- and seven-fold in LTED-H and LTED-I, respectively, and serine118 was phosphorylated. ERβ expression was up-regulated and the levels of insulin receptor substrate 1 (IRS-1) remained low throughout all phases. The levels of RIP140 mRNA appeared to decrease to approximately 50% of the WT message in LTED-Q and remained constant into the hypersensitive phase. No significant changes were observed in the expression of SUG-1, TIF-1 and SMRT in LTED. The overall changes in nuclear receptor interacting proteins do not appear to be involved in the hypersensitivity. Thus, the resistance of these human breast cancer cells to oestrogen-deprivation appears to be due to acquired hypersensitivity which may be explained in part by increased levels of and phosphorylated ER.  相似文献   

19.
Yu EJ  Kim SH  Heo K  Ou CY  Stallcup MR  Kim JH 《Nucleic acids research》2011,39(16):6932-6943
Estrogen receptor α (ERα) plays critical roles in development and progression of breast cancer. Because ERα activity is strictly dependent upon the interaction with coregulators, coregulators are also believed to contribute to breast tumorigenesis. Cell Cycle and Apoptosis Regulator 1 (CCAR1) is an important co-activator for estrogen-induced gene expression and estrogen-dependent growth of breast cancer cells. Here, we identified Deleted in Breast Cancer 1 (DBC1) as a CCAR1 binding protein. DBC1 was recently shown to function as a negative regulator of the NAD-dependent protein deacetylase SIRT1. DBC1 associates directly with ERα and cooperates synergistically with CCAR1 to enhance ERα function. DBC1 is required for estrogen-induced expression of a subset of ERα target genes as well as breast cancer cell proliferation and for estrogen-induced recruitment of ERα to the target promoters in a gene-specific manner. The mechanism of DBC1 action involves inhibition of SIRT1 interaction with ERα and of SIRT1-mediated deacetylation of ERα. SIRT1 also represses the co-activator synergy between DBC1 and CCAR1 by binding to DBC1 and disrupting its interaction with CCAR1. Our results indicate that DBC1 and SIRT1 play reciprocal roles as major regulators of ERα activity, by regulating DNA binding by ERα and by regulating co-activator synergy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号