首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

2.
The intermolecular interactions and phase structures of thermally processed wheat proteins with glycerol and water as plasticizers were studied by dynamic mechanical analysis and solid-state high-resolution NMR spectroscopy. The results of phase structures at scales of molecular level to tens of nanometers were correlated with the mechanical properties of the materials. The strong hydrogen bonding intermolecular interactions between the components in wheat proteins and the plasticizers resulted in a significant change in molecular motions of wheat protein materials. The plasticized systems, however, still presented a wide distribution of chain mobility at a scale from the molecular level to 20-30 nm, and the plasticizing effect was different for each wheat protein system. High protein content systems tended to be plasticized relatively easily especially when lipid content is high, but the existence of residual starch would require more plasticizers to reach a similar level of chain mobility. On a scale of 20-30 nm, plasticized vital wheat gluten (WG) and the deamidated wheat proteins (WP-I) were heterogeneous with each component exhibiting its individual mobility, whereas the plasticized insoluble protein system (WP-II) with poor mechanical properties was homogeneous. Both WG and WP-I systems showed excellent mechanical polymeric properties in tensile strength and elasticity despite the heterogeneity. The strong intermolecular hydrogen bonding interactions and soluble protein components in the materials could provide an adhesion among different components and act as a continuous matrix in the systems. Therefore, these materials displayed excellent mechanical properties via coordination effects among different components.  相似文献   

3.
2-[(2,5-dichloro-4-nitro-phenylamino)-methoxy-methyl]-8-hydroxy-quinoline 1 and 2-methyl-quinoline-5,8-dione-5-oxime 2 were obtained as potential HIV-1 integrase inhibitors and analyzed by X-ray crystallography. Semiempirical theoretical calculations of energy preferred conformations were also carried out. The crystal structures of both compounds are stabilized via hydrogen bonds and pi-pi stacking interactions. The planarity of compound 1 is caused by intramolecular hydrogen bonds.  相似文献   

4.
DNA is a highly effective molecule for controlling nanometer-scale structure. The convenience of using DNA lies in the programmability of Watson-Crick base-paired secondary interactions, useful both to design branched molecular motifs and to connect them through sticky-ended cohesion. Recently, the tensegrity triangle motif has been used to self-assemble three-dimensional crystals whose structures have been determined; sticky ends were reported to be the only intermolecular cohesive elements in those crystals. A recent communication in this journal suggested that tertiary interactions between phosphates and cytosine N(4) groups are responsible for intermolecular cohesion in these crystals, in addition to the secondary and covalent interactions programmed into the motif. To resolve this issue, we report experiments challenging this contention. Gel electrophoresis demonstrates that the tensegrity triangle exists in conditions where cytosine-PO(4) tertiary interactions seem ineffective. Furthermore, we have crystallized a tensegrity triangle using a junction lacking the cytosine suggested for involvement in tertiary interactions. The unit cell is isomorphous with that of a tensegrity triangle crystal reported earlier. This structure has been solved by molecular replacement and refined. The data presented here leave no doubt that the tensegrity triangle crystal structures reported earlier depend only on base pairing and covalent interactions for their formation.  相似文献   

5.
6.
A detailed picture of hydration and counterion location in the B-DNA duplex d(GCGAATTCG) is presented. Detailed data have been obtained by single crystal x-ray diffraction at atomic resolution (0.89 A) in the presence of Mg(2+). The latter is the highest resolution ever obtained for a B-DNA oligonucleotide. Minor groove hydration is compared with that found in the Na(+) and Ca(2+) crystal forms of the related dodecamer d(CGCGAATTCGCG). High resolution data (1.45 A) of the Ca(2+) form obtained in our laboratory are used for that purpose. The central GAATTC has a very stable hydration spine identical in all cases, independent of duplex length and crystallization conditions (counterions, space group). However, the organization of the water molecules (tertiary and quaternary layers) associated with the central spine vary in each case.  相似文献   

7.
8.
Molecular fragmentation is an attractive approach to the simulation of large molecules, in which calculations are carried out on small segments of the molecule, achieving linear scaling but reduced accuracy. Its application to crystal structure prediction (CSP) is challenged by high accuracy requirements. In this study, the applicability of a fragmentation scheme is tested for distributed multipoles, which are used in CSP to model intermolecular electrostatic interactions. Four test systems are investigated: a molecular salt, the highly conjugated molecule retinal, a model pharmaceutical molecule and the nonlinear molecule nitrotriacetanilide. It is demonstrated that fragment-based electrostatics reproduce, to an acceptable degree, a set of crystal structures generated using whole-molecule electrostatics. Inclusion of the molecular environment of each fragment out to four bonds separation is found to provide a sufficiently accurate set of distributed multipoles for the purposes of CSP.  相似文献   

9.
10.
HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved “HMG boxes” and can be sequence-specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex.  相似文献   

11.
12.
13.
Role of water structure in cell-wall interactions   总被引:1,自引:0,他引:1  
  相似文献   

14.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

15.
The mechanisms of intermolecular protein complex formation were studied by the example of monomers, oligomers and aggregates of bovine serum albumin (BSA) depending on the protein concentration, pH and urea concentration. Using dynamic light scattering (DLS), analytical ultracentrifugation (AUC) and PAG electrophoresis we have shown the existence of dynamic equilibrium between monomers and aggregates in BSA solution. Decreasing pH of the solution (4.0–1.0) resulted in increasing sizes of the aggregates. In the solutions with low urea concentrations (below 2 M) the sizes of aggregates decreased, while higher urea concentrations (2–8 M) induced formation of larger aggregates due to the unfolding of the protein.  相似文献   

16.
X-PLOR modelling of collagen dimers containing Gly-Glu-Arg in each chain has been carried out. The interaction between molecules when two Gly-Glu-Arg are present on each chain is found to be substantially less than two times that obtained with one per chain, implying that relative tilting of two collagen molecules does not offset the disadvantages of misalignment of the interacting moieties. This implies that if multiple (Glu(-)-Arg+)3 interactions are important in fibril formation, their lateral separations must be large enough to insure that they act independently.  相似文献   

17.
The refined crystal structure of deoxyhemoglobin S (Padlan, E. A., and Love, W. E. (1985) J. Biol. Chem. 260, 8272-8279) was used to analyze in detail the molecular interactions between hemoglobin tetramers in the crystal. The analysis confirms the close similarity and also the nonequivalence of the molecular interactions involving the two independent tetramers in the asymmetric unit of the crystal. The residue at the site of the hemoglobin S mutation, beta 6, is intimately involved in the lateral contacts between adjacent molecules. The molecular contacts in the crystals of deoxyhemoglobin S, deoxyhemoglobin A, and deoxyhemoglobin F were compared; some contacts involve the same regions of the molecule although the details of the interactions are very different. The effect of introducing an R state tetramer into the deoxyhemoglobin S strands was investigated using the known structure of carbon monoxyhemoglobin A. It was found that substituting a molecule of carbon monoxyhemoglobin A for one of the deoxyhemoglobin S tetramers results in extensive molecular interpenetration.  相似文献   

18.
19.
Limn CK  Roy P 《Journal of virology》2003,77(20):11114-11124
The surface of the bluetongue virus core forms a T=13 quasiequivalent icosahedral protein shell with 260 trimers of a single gene product: VP7 protein. Underneath is a smooth layer, made up of VP3 protein, which appears to guide and nucleate the assembly of VP7 trimers. The contacts between the two shells are extensive but nonspecific, and construction of the T=13 icosahedral shell requires polymorphism in the association of the VP7 subunits, each of which has two domains that contribute to trimer formation. We used structural and relative sequence information to guide an investigation of how such a complex structure is achieved during virus assembly and what residues are required to form a stable capsid. Fifteen single or multiple site-specific substitution mutations were introduced into the helical domain of VP7, which is closely associated with the VP3 layer, and the effects on capsid assembly were analyzed. Our data show that both the position and the nature of single residues are critical for the attachment of VP7 to VP3 and that formation of a stable VP7 lattice is not the automatic consequence of trimer formation.  相似文献   

20.
In order to establish infection, pathogenic bacteria must obtain essential nutrients such as iron. Under acidic and/or anaerobic conditions, most bacteria utilize the Feo system in order to acquire ferrous iron (Fe2+) from their host environment. The mechanism of this process, including its regulation, remains poorly understood. In this work, we have determined the crystal structure of FeoA from the nosocomial agent Klebsiella pneumoniae (KpFeoA). Our structure reveals an SH3-like domain that mediates interactions between neighboring polypeptides via hydrophobic intercalations into a Leu-rich surface ridge. Using docking of a small peptide corresponding to a postulated FeoB partner binding site, we demonstrate that KpFeoA can assume both “open” and “closed” conformations, controlled by binding at this Leu-rich ridge. We propose a model in which a “C-shaped” clamp along the FeoA surface mediates interactions with its partner protein, FeoB. These findings are the first to demonstrate atomic-level details of FeoA-based protein-protein interactions and provide a framework for testing FeoA-FeoB interactions, which could be exploited for future antibiotic developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号