首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry (DSC) was used to assay thermal transitions that might be responsible for cell death and other responses to hyperthermia or heat shock, such as induction of heat shock proteins (HSP), in whole Chinese hamster lung V79 cells. Seven distinct peaks, six of which are irreversible, with transition temperatures from 49.5 degrees C to 98.9 degrees C are detectable. These primarily represent protein denaturation with minor contributions from DNA and RNA melting. The onset temperature of denaturation, 38.7 degrees C, is shifted to higher temperatures by prior heat shock at 43 degrees and 45 degrees C, indicative of irreversible denaturation occurring at these temperatures. Thus, using DSC it is possible to demonstrate significant denaturation in a mammalian cell line at temperatures and times of exposure sufficient to induce hyperthermic damage and HSP synthesis. A model was developed based on the assumption that the rate limiting step of hyperthermic cell killing is the denaturation of a critical target. A transition temperature of 46.3 degrees C is predicted for the critical target in V79 cells. No distinct transition is detectable by DSC at this temperature, implying that the critical target comprises a small fraction of total denaturable material. The short chain alcohols methanol, ethanol, isopropanol, and t-butanol are known hyperthermic sensitizers and ethanol is an inducer of HSP synthesis. These compounds non-specifically lower the denaturation temperature of cellular protein. Glycerol, a hyperthermic protector, non-specifically raises the denaturation temperature for proteins denaturing below 60 degrees C. Thus, there is a correlation between the effect of these compounds on protein denaturation in vivo and their effect on cellular sensitivity to hyperthermia.  相似文献   

2.
The soluble ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus underwent a major unfolding transition when solutions of the enzyme at pH 7.5 were heated. The midpoint occurred at 46 degrees C when monitored by changes in enzymic activity and intrinsic fluorescence, and at 49 degrees C when monitored by circular dichroism. The products of thermal denaturation retained much secondary structure, and no evidence of subunit dissociation was detected after cooling at 20 degrees C. The thermal transition was irreversible, and thiol groups were not involved in the irreversibility. The presence of ATP, adenylyl imidodiphosphate, CaCl2 or higher concentrations of ATPase conferred stability against thermal denaturation, but did not prevent the irreversibility one denaturation had taken place. In the presence of guanidinium chloride, thermal denaturation occurred at lower temperatures. The midpoints of the transition were 45 degrees C in 0.25 M-, 38 degrees C in 0.5 M-and 30 degrees C in 0.75 M-denaturant. In the highest concentration of guanidinium chloride a similar unfolding transition induced by cooling was observed. Its midpoint was 9 degrees C, and the temperature of maximum stability of the protein was 20 degrees C. The discontinuities occurring the the Arrhenius plots of the activity of this enzyme had no counterpart in variations in the far-u.v. circular dichroism or intrinsic fluorescence of the protein at the same temperature.  相似文献   

3.
High sensitivity differential scanning calorimetry (DSC) was employed to study the thermal denaturation of components of pea chloroplast thylakoid membranes. In contrast to previous reports utilizing spinach thylakoids, several transitions are reversible, and deconvolution of the calorimetric curves indicates nine transitions in both first and second heating scans, but overlapping transitions obscure at least three transitions in the first heating scans of control thylakoids. Glutaraldehyde fixation increases the denaturation temperature of several transitions which is consistent with a reported increase in thermal stability of thylakoid function due to fixation. Acidic pH treatment has little effect on the DSC curves, although it has been reported to have a significant effect on membrane structure. Separation of grana from stroma thylakoids indicates that components responsible for transitions centered at approximately 56, 73, 77, and 91 degrees C are predominantly or exclusively associated with grana thylakoids, whereas components responsible for transitions centered at approximately 63 and 81 degrees C are predominantly associated with stroma thylakoids. A broad transition centered at 66 degrees C is associated with grana thylakoids, whereas a sharp transition at the same temperature is due to a component associated with stroma thylakoids. Evidence obtained by washing treatments suggests the latter transition originates from the denaturation of the thylakoid ATPase (CF1). Analysis of the calorimetric enthalpy values indicates most components of the grana thylakoids denature irreversibly at high temperature, whereas components associated with the stroma thylakoids have a considerable degree of thermal reversibility.  相似文献   

4.
The thermal denaturation of bovine fibrinogen has been investigated using differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. Differential scanning calorimetry measurements were carried out while changing the scan-rate. The transition at 57 degrees C was found to be irreversible and highly scan-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. The secondary structural changes at various temperatures were monitored by far-ultraviolet CD spectroscopy. These results show that the DSC transition for the thermal denaturation of bovine fibrinogen can be interpreted in terms of a kinetic process, N --> F, where k is a first-order kinetic constant that changes with temperature according to the Arrhenius equation. An important transition peak was observed at 78.8 degrees C which is attributed to the C-terminal parts of the Aalpha chains of fibrinogen.  相似文献   

5.
Feathers are composed of a structure that, whilst being very light, is able to withstand the large aerodynamic forces exerted upon them during flight. To explore the contribution of molecular orientation to feather keratin mechanical properties, we have examined the nanoscopic organisation of the keratin molecules by X-ray diffraction techniques and have confirmed a link between this and the Young's modulus of the feather rachis. Our results indicate that along the rachis length, from calamus to tip, the keratin molecules become more aligned than at the calamus before returning to a state of higher mis-orientation towards the tip of the rachis. We have also confirmed the general trend of increasing Young's modulus with distance along the rachis. Furthermore, we report a distinct difference in the patterns of orientation of beta-keratin in the feathers of flying and flightless birds. The trend for increased modulus along the feathers of volant birds is absent in the flightless ostrich.  相似文献   

6.
Two endothermic peaks could be observed for five commercial samples of bovine serum albumin (BSA). The smaller peak observed by differential scanning calorimetry (DSC) corresponded to enthalpy relaxation. This peak was followed on storage of BSA, in its glassy state, after it had been heated above its denaturation temperature. Enthalpy and peak temperature increased with duration of storage. On storage for one week at 60 degrees C, a sample at 8.3% moisture showed a peak at 100 degrees C with an energy value of approximately 2 J per g protein. BSA samples were heated within the DSC sufficiently to eliminate the lower enthalpy peak but without altering the denaturation enthotherm. The amount of physical aging shown by these BSA samples was similar to that of the heat-denatured samples. It was concluded that the heating endotherms of dry BSA reflect both the storage and thermal history of the sample. Possible implications of the enthalpy relaxation of BSA on the behavior of this important protein are considered.  相似文献   

7.
Thermal denaturation of natural DNA in the absence and presence of antitumor anthracycline antibiotics has been studied by adiabatic differential scanning calorimetry. The helix-coil transition is operationally irreversible as measured by DSC. Both the melting temperature and the overall molar transition enthalpy of the DNA samples was dependent on the percentage of GC base pairs. Calorimetric traces of anthracycline-DNA complexes have qualitatively similar features and the significance of this characteristic is discussed. The unsaturated drug-DNA complex melts through complex thermal transitions with one broad endotherm in the same temperature region as free DNA and the other at a higher temperature which is rf (mol ligand per mol DNA in base pairs) value dependent. Antibiotic binding at concentrations close to saturating conditions (rf = 0.2) reverts the melting range to a value near to its original one and increases the thermal stability of the duplex structure by around 30 degrees C. In addition, the calorimetric enthalpy is increased by between 64% and 150%, depending on which ligand was used.  相似文献   

8.
Mechanism of solvent induced thermal stabilization of papain   总被引:1,自引:0,他引:1  
In the present study an attempt is made to elucidate the effects of various cosolvents, such as sorbitol, sucrose, xylose and glycerol, on papain. The stabilizing effects of these cosolvents on the structure and function of papain is determined by the activity measurements, fluorescence spectroscopy and differential scanning calorimetry (DSC). The enzyme activity measurements indicate several fold increase in the thermal stability of the enzyme in all the cosolvents used. The thermal denaturation studies of papain in presence of various concentrations of cosolvents indicated a shift in the apparent thermal denaturation temperature (app Tm) suggesting increased thermal stability of papain in presence of cosolvents. The app Tm shifted from a control value of 83+/-1 degrees C to a value of >90+/-1 degrees C in presence of 40% sorbitol. The DSC thermogram for native papain can be clearly deconvoluted into two transitions corresponding to left and right domain and in presence of cosolvents both transitions A and B shift to higher temperature. Maximum stabilization was seen in case of 30% sorbitol where the thermal transition temperatures increased compared to control. The results from partial specific volume measurements of papain in presence of cosolvents suggest that the preferential interaction parameter (xi3) was negative in all cosolvents and maximum hydration was observed in the case of glycerol where the preferential interaction parameter was 0.165g/g. These above results suggest that there is a considerable increase in the thermal stability of papain in presence of these cosolvents as a result of preferential hydration.  相似文献   

9.
Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around 82 degrees C and above 100 degrees C at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at 60 degrees C.  相似文献   

10.
Comparison of thermal properties of bovine spectrin and fodrin   总被引:1,自引:0,他引:1  
Thermal properties of bovine brain fodrin have been studied by circular dichroism and electron spin resonance and compared to those of bovine erythrocyte spectrin. Protein unfolding was induced either by urea or by a combination of heat and urea. The denaturation profiles of the two proteins, as measured by the changes in ellipticity at 222 nm as a function of temperature, were very similar but fodrin denaturation occurred at both higher temperatures and higher urea concentrations. In the absence of urea the thermal transition of spectrin was centered at 51 degrees C and that of fodrin at 54.5 degrees C. Proteins were also labeled with a maleimide analog spin probe. Spin-labeled fodrin showed a thermal transition similar to that of spectrin but centered at 46 degrees C instead of 42 degrees C. These findings indicated a close structural similarity of the two proteins but a slightly higher conformational stability of fodrin to both heat and urea.  相似文献   

11.
The thermal behavior, moisture adsorption properties and structural and morphological characteristics of mango powders were evaluated. The powders were obtained by foam mat drying methodology using albumin (ALB), mixture (EB) of monoglycerides of fatty acids, sorbitan monostearate and polyoxyethylene sorbitan monostearate and a combination of the two (EB-ALB) as foaming agents. The evaluation was done by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the moisture adsorption isotherms were also determined. The powder with EB had a glass transition temperature (Tg) of ?4.2 °C. The denaturation temperature of pure albumin (82.2 °C) increased in the powders with ALB to 117 °C and in those with EB-ALB to 102 °C, due to the thermal stability provided by the pulp sugars. The moisture sorption isotherm of the EB-powder showed a higher water equilibrium content than the other powders. All the powders were in the amorphous state. The morphology of the powder with EB showed corrugated particles, whereas those with ALB and EB-ALB showed particles with a less porous aspect and more compact surfaces than the powders with EB.  相似文献   

12.
The thermal denaturation of the hemocyanin from gastropod Rapana thomasiana (RtH) at neutral pH was studied by means of differential scanning calorimetry (DSC). The denaturation was completely irreversible as judged by the absence of any endotherm on rescanning of previously scanned samples. Two transitions, with apparent transition temperatures (T(m)) at 83 and 90 degrees C, were detected by DSC using buffer 20 mM MOPS, containing 0.1 M NaCl, 5 mM CaCl(2) and 5 mM MgCl(2), pH 7.2. Both T(m) were dependent on the scanning rate, suggesting that the thermal denaturation of RtH is a kinetically controlled process. The activation energy (E(A)) of 597+/-20 kJ mol(-1) was determined for the main transition (at 83 degrees C). E(A) for the second transition was 615+/-25 kJ mol(-1). The T(m) and Delta H(cal) values for the thermal denaturation of RtH were found to be independent of the protein concentration, signifying that the dissociation of the protein into monomers does not take place before the rate-determining state of the process of thermal unfolding.  相似文献   

13.
Cui L  Du G  Zhang D  Chen J 《Bioresource technology》2008,99(9):3794-3800
Thermal stability and conformational changes of transglutaminase (TGase) from a newly isolated Streptomyces hygroscopicus were investigated in this study. The inactivation kinetics of the microbial transglutaminase (MTGase) was fitted using one-step inactivation model. It was much more stable under 40 degrees C. The half-lives for the MTGase at 50 degrees C and 60 degrees C were only 20 min and 8 min, respectively. Spectroscopic studies of the enzyme suggested conformational transition from ordered secondary structural elements (alpha/beta-protein) to unordered structure during thermal denaturation. Some polyols could improve the thermal stability of the enzyme. Among the polyols examined, the prolonged half-lives of 40 min at 50 degrees C and 20 min at 60 degrees C were gained by adding 10% glycerol. The results of differential scanning calorimetric (DSC) analysis showed a distinct transition peak with a significant greater Tm and DeltaH for the MTGase mixed with polyols in comparison with the control, which indicated that the polyols could maintain the natural structure of the enzyme to some extent. The SDS-PAGE electrophoresis of cross-linked casein confirmed that the stabilizers could protect the MTGase from thermal denaturation.  相似文献   

14.
Lorenzo Alibardi 《Protoplasma》2017,254(3):1259-1281
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3–4-nm-thick filaments through a different mechanism from that of 8–10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10–12 kDa containing 97–105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14–16 kDa made of 122–146 amino acids), claws and beak proteins (14–17 kDa proteins of 134–164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.  相似文献   

15.
Chu HL  Lin SY 《Biophysical chemistry》2001,89(2-3):173-180
Temperature-dependent secondary structures of the amyloid beta(1-40) peptide in the solid state were studied by simultaneous Fourier transform infrared/differential scanning calorimetry (FT-IR/DSC) microspectroscopic system with the heating-cooling-reheating cycle. The result indicates that a thermal transition temperature at 45 degrees C was easily obtained from the three-dimensional plot of the transmission FT-IR spectra as a function of temperature. Furthermore, the thermal-dependent conformational transformations, due to denaturation and aggregation, of solid amyloid beta(1-40) were mainly evidenced by reducing the compositions from 37 to 20-24% for alpha-helical and random coil structures but increasing the components from 27 to 45% for intermolecular beta-sheet structures. Thermal-irreversible behavior and a poor thermal stability of solid amyloid beta(1-40) were also observed from the poor restoration of the secondary conformational changes in the heated sample.  相似文献   

16.
Thermal-induced conformational stability and changes in denaturation temperature of human fibrinogen (FBG) after different mechanical compressions were investigated by a simultaneous Fourier transform infrared microspectroscopy equipped with thermal analyzer (thermal FTIR microscopic system). The confocal Raman microspectroscopy was also applied to determine the thermal reversibility of solid FBG. FBG powder was pressed on one KBr pellet (1 KBr method) or sealed within two KBr pellets (2 KBr method) by different mechanical compressions. The result indicates that there was no marked difference in the thermal behavior for the solid FBG samples prepared by 1 KBr method in the heating process even under different mechanical compression pressures, in which the thermal-induced denaturation temperatures from native to denatured state were maintained constant at 66-67 degrees C. However, the denaturation temperature for the solid FBG samples prepared by 2 KBr method was shifted from 55 to 62 degrees C with the increase of mechanical compression pressure. A good linear correlation was also found between the denaturation temperature and mechanical compression pressure for FBG samples prepared by 2 KBr method. The solid FBG sample, whether prepared by 1 KBr or 2 KBr method, was also found to show the thermal-irreversible property.  相似文献   

17.
The thermal denaturation, aggregation, and degradation of hen egg white ovalbumin dissolved in distilled and deionized water (60 mg/ml, pH 7.5) was investigated by differential scanning calorimetry (DSC), polyacrylamide gel electrophoresis (PAGE), and viscosity measurement. Two independent endothermic peaks were observed up to 180 degrees C by the DSC analysis. The first peak appeared at around 80 degrees C, corresponding to the denaturation temperature of ovalbumin. The second peak occurred around 140 degrees C due to the degradation of protein molecules as judged from the analysis by SDS-PAGE. The viscosity of the ovalbumin solution increased dramatically above 88 degrees C and maintained almost the same value up until heating to 140 degrees C. The increase in viscosity after heating to 88 degrees C was due to the denaturation and subsequent aggregation of ovalbumin molecules as observed by SDS-PAGE. The decrease in viscosity of the samples heated above 150 degrees C appears to have been the result of degradation of the ovalbumin molecules.  相似文献   

18.
S Kitamura  T Kuge 《Biopolymers》1989,28(2):639-654
The thermal conformational transitions of two sonicated samples of schizophyllan were studied in water-dimethylsulfoxide (DMSO) mixtures by high-sensitivity differential scanning calorimetry (DSC). Two transitions were observed over most of the range of solvent compositions. These were assigned to an internal change of the triple helix [T. Itou et al. (1986) Macromolecules 19, 1234-1240] and a triple-helix-single-coil transition [T. Sato et al. (1981) Carbohydr. Res. 95, 195-204], respectively. In water, the former transition observed at lower temperature for a low molecular weight sample, U-1, is centered at 3 degrees C and characterized by the specific enthalpy, delta hcal = 3.29 J g-1. A higher molecular weight sample, M-2, showed this transition at 7 degrees C with delta hcal = 4.39 J g-1. The transition temperature for both samples increased with increasing DMSO concentration up to about 50 degrees C at 70 weight % DMSO, and then rapidly decreased with increasing DMSO concentration, with about 3 degrees C higher for M-2 than for U-1 over the DMSO concentration. The transition was not observed when the concentration of DMSO exceeded 87%. It was found that delta hcal for both samples was a linear function of t 1/2, the temperature of half-completion in degrees C, delta hcal = 0.177t + 2.96. The triple helix-coil transition was observed at around 127 degrees C for U-1 and above 130 degrees C for M-2 in the range of DMSO composition below about 70%. The transition temperature decreased with increasing DMSO concentration at above 70%, and the transition finally disappeared when the DMSO concentration exceeded 90%. The plot of delta hcal vs. t 1/2 for the transition of both samples gave a linear relation, delta hcal = 0.253t - 10.58. The reversibility of the transition at lower temperature was demonstrated by the reversibility of the curves when the first heating was stopped before the second transition. Once the heating was performed over the second transition, the reheating DSC curves showed several endothermic peaks, indicating the irreversibility of the transition and heterogeneity in the conformation of the heated schizophyllan.  相似文献   

19.
This report describes the effect of temperature on the mechanical viscoelastic properties such as: storage modulus (E′), loss modulus (E″), and loss tangent (tan δ) of the collagen sponges modified with hyaluronic acid (HA). In order to detect collagen–HA copolymer denaturation and to assess its thermal stability, the differential scanning calorimetry (DSC) supplemented by thermogravimetric (TG) measurements was used. The denaturation temperature (Td) of unmodified collagen samples increased from 69 to 86 °C for cross-linked samples, respectively. These temperature dependencies show remarkable changes in E′ and E″ at selected temperature up to 226 °C for all samples due to the release of loosely and strongly bound water. The influence of HA on the viscoelastic behavior of collagen is manifested by a shift of the tan δ peak associated with the process of decomposition towards higher temperatures resulting in a higher thermo-stability of the modified scaffolds.  相似文献   

20.
The conformational stabilities of bovine lens gamma-crystallin fractions II, IIIA, IIIB, and IVA and those modified with glutathione were compared by studying the thermal and guanidine hydrochloride (Gdn-HCl) denaturation behavior. The conformational state was monitored by both far-UV CD and fluorescence measurements. All the gamma-crystallins studied showed a sigmoidal order-disorder transition with varied melting temperatures. The thermal denaturation of these proteins is reversible up to a temperature 3 or 4 degrees C above T 1/2; above this temperature, irreversible aggregation occurs. The validity of a two-state approximation of both thermal and Gdn-HCl denaturation was tested for all four crystallins, and the presence of one or more intermediates was evident in the unfolding of IVA. delta GDH2O values of these crystallins range from 4 to 9 kcal/mol. Upon glutathione treatment IVA showed the maximum decrease in T 1/2 by approximately 9 degrees C and in delta GDH2O value by 29%; the smallest decrease in T 1/2 was for IIIA by 2 degrees C and in delta GDH2O by 15%. We have demonstrated that the glutathione reaction can dramatically reduce the conformational stability of gamma-crystallins and, thus, that the thermodynamic quantities of the unreacted crystallins can be used to evaluate the stability of these proteins when modified during cataract formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号