首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature of fish antibodies (concentrating primarily on the most studied species of bony and cartilaginous fishes) is discussed in terms of their immunoglobulin biochemistry and immunobiology. The major serum immunoglobulin (IgM) is described in detail, and structural variants of IgM are discussed in terms of their distribution in different fish species, and different anatomical sites within a fish (e.g. blood, mucus, bile). Structural variation in IgM includes the size of the constituent heavy and light polypeptide chains, and the extent to which they are covalently associated with one another. The intramolecular heterogeneity of binding sites for antigen on IgM is reviewed and possible mechanisms for the phenomenon are presented. The evidence suggests that some, but not all, species of fish possess a detectable J chain in their IgM. The general nature of the fish immune response is that IgM antibody of moderate affinity is produced and prolonged or repeated immunization: (a) fails to produce a switch to production of a non-IgM class of antibody, and (b) fails to induce substantial increases in the affinity of the specific antibodies. Evidence supports a conclusion that fish lack the typical secondary antibody response seen in mammals, and possess antibodies of limited heterogeneity. Our current understanding of the genetic basis for fish antibodies is presented. Fish appear to utilize the same basic genetic elements as mammals to encode and regulate the expression of their immunoglobulins. The teleost heavy chain (IgH) locus resembles that of mammals and amphibia in its organization. The IgH locus of elasmobranchs is arranged in a unique multicluster organization. The light chain loci of elasmobranchs are organized analogously to the heavy chain locus (in multiclusters). The structure of the light chain locus of teleosts is presently unknown. Teleost fish utilize a unique pattern of RNA processing to generate the secreted and membrane receptor forms of the IgM heavy chain. The genes encoding the unique low molecular weight Ig heavy chain found in skates and rays have been cloned and sequenced, and also display the multicluster pattern of organization. Teleost fish appear to have normal numbers of variable regions: it is hypothesized (but as yet unproven) that the failure of their IgM to increase in affinity is due to a deficiency of somatic hypermutational mechanisms in their Ig gene variable regions during B lymphocyte differentiation.  相似文献   

2.
In this study we examined the role of protein phosphorylation/dephosphorylation in the transport properties of the wheat ( Triticum aestivum ) root malate efflux transporter underlying Al resistance, TaALMT1. Pre-incubation of Xenopus laevis oocytes expressing TaALMT1 with protein kinase inhibitors (K252a and staurosporine) strongly inhibited both basal and Al3+-enhanced TaALMT1-mediated inward currents (malate efflux). Pre-incubation with phosphatase inhibitors (okadaic acid and cyclosporine A) resulted in a modest inhibition of the TaALMT1-mediated currents. Exposure to the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), enhanced TaALMT1-mediated inward currents. Since these observations suggest that TaALMT1 transport activity is regulated by PKC-mediated phosphorylation, we proceeded to modify candidate amino acids in the TaALMT1 protein in an effort to identify structural motifs underlying the process regulating phosphorylation. The transport properties of eight single point mutations (S56A, S183A, S324A, S337A, S351-352A, S384A, T323A and Y184F) generated in amino acid residues predicted to be phosphorylation sites and examined electrophysiologically. The basic transport properties of mutants S56A, S183A, S324A, S337A, S351-352A, T323A and Y184F were not altered relative to the wild-type TaALMT1. Likewise the sensitivity of these mutants to staurosporine resembled that observed for the wild-type transporter. However, the mutation S384A was noticeable, as in oocytes expressing this mutant protein TaALMT1-mediated basal and Al-enhanced currents were significantly inhibited, and the currents were insensitive to staurosporine or PMA. These findings indicate that S384 is an essential residue regulating TaALMT1 activity via direct protein phosphorylation, which precedes Al3+ enhancement of transport activity.  相似文献   

3.
4.
Pyrrolnitrin is a secondary metabolite of Pseudomonas and Burkholderia sp. strains with strong antifungal activity. Production of pyrrolnitrin has been correlated with the ability of some bacteria to control plant diseases caused by fungal pathogens, including the damping-off pathogen Rhizoctonia solani. Pseudomonas fluorescens BL915 has been reported to produce pyrrolnitrin and to be an effective biocontrol agent for this pathogen. We have isolated a 32-kb genomic DNA fragment from this strain that contains genes involved in the biosynthesis of pyrrolnitrin. Marker-exchange mutagenesis of this DNA with Tn5 revealed the presence of a 6.2-kb region that contains genes required for the synthesis of pyrrolnitrin. The nucleotide sequence of the 6.2-kb region was determined and found to contain a cluster of four genes that are required for the production of pyrrolnitrin. Deletion mutations in any of the four genes resulted in a pyrrolnitrin-nonproducing phenotype. The putative coding sequences of the four individual genes were cloned by PCR and fused to the tac promoter from Escherichia coli. In each case, the appropriate tac promoter-pyrrolnitrin gene fusion was shown to complement the pyrrolnitrin-negative phenotype of the corresponding deletion mutant. Transfer of the four gene cluster to E. coli resulted in the production of pyrrolnitrin by this organism, thereby demonstrating that the four genes are sufficient for the production of this metabolite and represent all of the genes required to encode the pathway for pyrrolnitrin biosynthesis.  相似文献   

5.
6.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

7.
Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.  相似文献   

8.
9.
We have used degenerate oligonucleotide probes based on sequences conserved among known protein tyrosine phosphatases (PTPases) to identify two Schizosaccharomyces pombe genes encoding PTPases. We previously described the cloning of pyp1+ (S. Ottilie, J. Chernoff, G. Hannig, C. S. Hoffman, and R. L. Erikson, Proc. Natl. Acad. Sci. USA 88:3455-3459, 1991), and here we describe a second gene, called pyp2+. The C terminus of each protein contains sequences conserved in the apparent catalytic domains of all known PTPases. Disruption of pyp2+ results in viable cells, as was the case for pyp1+, whereas disruption of pyp2+ and pyp1+ results in synthetic lethality. Overexpression of either pyp1+ or pyp2+ in wild-type strains leads to a delay in mitosis but is suppressed by a wee1-50 mutation at 35 degrees C or a cdc2-1w mutation. A pyp1 disruption suppresses the temperature-sensitive lethality of a cdc25-22 mutation. Our data suggest that pyp1+ and pyp2+ act as negative regulators of mitosis upstream of the wee1+/mik1+ pathway.  相似文献   

10.
11.
The Arabidopsis disease resistance gene RPS2 is involved in recognition of bacterial pathogens carrying the avirulence gene avrRpt2, and the RPM1 resistance gene is involved in recognition of pathogens carrying avrRpm1 or avrB. We identified and cloned two Arabidopsis genes, AIG1 and AIG2 (for avrRpt2-induced gene), that exhibit RPS2- and avrRpt2-dependent induction early after infection with Pseudomonas syringae pv maculicola strain ES4326 carrying avrRpt2. However, ES4326 carrying avrRpm1 or avrB did not induce early expression of AIG1 and AIG2. Conversely, ES4326 carrying avrRpm1 or avrB induced early expression of the previously isolated defense-related gene ELI3, whereas ES4326 carrying avrRpt2 did not. The induction patterns of the AIG genes and ELI3 demonstrate that different resistance gene-avr gene combinations can elicit distinct defense responses. Furthermore, by examining the expression of AIG1 and ELI3 in plants infiltrated with a mixed inoculum of ES4326 carrying avrRpt2 and ES4326 carrying avrRpm1, we found that there is interference between the RPS2- and RPM1-mediated resistance responses.  相似文献   

12.
Nucleic acids extracted from microbial biomass without prior culturing were hybridized with probes representing four mer operons to detect genes encoding adaptation to Hg2+ in whole-community genomes. A 29-fold enrichment in sequences similar to the mer genes of transposon Tn501 occurred during adaptation in a freshwater community. In an estuarine community, all four mer genes were only slightly enriched (by three- to fivefold), suggesting that additional, yet uncharacterized, mer genes encoded adaptation to Hg2+.  相似文献   

13.
We describe the cloning and molecular analysis of TRK2, the gene likely to encode the low-affinity K+ transporter in Saccharomyces cerevisiae. TRK2 encodes a protein of 889 amino acids containing 12 putative membrane-spanning domains (M1 through M12), with a large hydrophilic region between M3 and M4. These structural features closely resemble those contained in TRK1, the high-affinity K+ transporter. TRK2 shares 55% amino acid sequence identity with TRK1. The putative membrane-spanning domains of TRK1 and TRK2 share the highest sequence conservation, while the large hydrophilic regions between M3 and M4 exhibit the greatest divergence. The different affinities of TRK1 trk2 delta cells and trk1 delta TRK2 cells for K+ underscore the functional independence of the high- and low-affinity transporters. TRK2 is nonessential in TRK1 or trk1 delta haploid cells. The viability of cells containing null mutations in both TRK1 and TRK2 reveals the existence of an additional, functionally independent potassium transporter(s). Cells deleted for both TRK1 and TRK2 are hypersensitive to low pH; they are severely limited in their ability to take up K+, particularly when faced with a large inward-facing H+ gradient, indicating that the K+ transporter(s) that remains in trk1 delta trk2 delta cells functions differently than those of the TRK class.  相似文献   

14.
The compartments of eukaryotic cells maintain a distinct protein composition to perform a variety of specialized functions. We developed a new method for identifying the proteins that are transported to the endoplasmic reticulum (ER) in living mammalian cells. The principle is based on the reconstitution of two split fragments of enhanced green fluorescent protein (EGFP) by protein splicing with DnaE from Synechocystis PCC6803. Complementary DNA (cDNA) libraries fused to the N-terminal halves of DnaE and EGFP are introduced in mammalian cells with retroviruses. If an expressed protein is transported into the ER, the N-terminal half of EGFP meets its C-terminal half in the ER, and full-length EGFP is reconstituted by protein splicing. The fluorescent cells are isolated using fluorescence-activated cell sorting and the cDNAs are sequenced. The developed method was able to accurately identify cDNAs that encode proteins transported to the ER. We identified 27 novel proteins as the ER-targeting proteins. The present method overcomes the limitation of the previous GFP- or epitope-tagged methods, using which it was difficult to identify the ER-targeting proteins in a high-throughput manner.  相似文献   

15.
16.
T Barkay  C Liebert    M Gillman 《Applied microbiology》1989,55(6):1574-1577
Nucleic acids extracted from microbial biomass without prior culturing were hybridized with probes representing four mer operons to detect genes encoding adaptation to Hg2+ in whole-community genomes. A 29-fold enrichment in sequences similar to the mer genes of transposon Tn501 occurred during adaptation in a freshwater community. In an estuarine community, all four mer genes were only slightly enriched (by three- to fivefold), suggesting that additional, yet uncharacterized, mer genes encoded adaptation to Hg2+.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号