首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We have developed a software, Cell Database, for archiving records about cells stored in liquid nitrogen tanks. Once installed on a web server, the database is accessed through a standard web browser. This user-friendly and self-explanatory application is independent of computer platform and periodic upgrades of a commercial software. Our web application allows import of data from other database programs and adaptation to different tank formats, types of samples, and archiving needs.  相似文献   

2.
ArrayCyGHt is a web-based application tool for analysis and visualization of microarray-comparative genomic hybridization (array-CGH) data. Full process of array-CGH data analysis, from normalization of raw data to the final visualization of copy number gain or loss, can be straightforwardly achieved on this arrayCyGHt system without the use of any further software. ArrayCyGHt, therefore, provides an easy and fast tool for the analysis of copy number aberrations in any kinds of data format. AVAILABILITY: ArrayCyGHt can be accessed at http://genomics.catholic.ac.kr/arrayCGH/  相似文献   

3.
The present study describes a RDBMS (relational database management system) for the effective management of Filariasis, a vector borne disease. Filariasis infects 120 million people from 83 countries. The possible re-emergence of the disease and the complexity of existing control programs warrant the development of new strategies. A database containing comprehensive data associated with filariasis finds utility in disease control. We have developed a database containing information on the socio-economic status of patients, mosquito collection procedures, mosquito dissection data, filariasis survey report and mass blood data. The database can be searched using a user friendly web interface.

Availability  相似文献   


4.
5.
Tissue microarrays are increasingly important tools that bring high-throughput technology to traditional pathology laboratories. In many cases, each spot on a tissue microarray is scored by a skilled pathologist and recorded manually. TAD consists of an Active Server Page web interface to a relational database that automates recording scores and linking them with clinical data for future interpretation. TAD is an open source application that can be installed locally.  相似文献   

6.

Background

When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources.

Results

We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format.

Conclusions

dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register. Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0505-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
The Generic Model Organism Database (GMOD) initiative provides species-agnostic data models and software tools for representing curated model organism data. Here we describe GMODWeb, a GMOD project designed to speed the development of model organism database (MOD) websites. Sites created with GMODWeb provide integration with other GMOD tools and allow users to browse and search through a variety of data types. GMODWeb was built using the open source Turnkey web framework and is available from .  相似文献   

8.
hmChIP is a database of genome-wide chromatin immunoprecipitation (ChIP) data in human and mouse. Currently, the database contains 2016 samples from 492 ChIP-seq and ChIP-chip experiments, representing a total of 170 proteins and 11 069 914 protein-DNA interactions. A web server provides interface for database query. Protein-DNA binding intensities can be retrieved from individual samples for user-provided genomic regions. The retrieved intensities can be used to cluster samples and genomic regions to facilitate exploration of combinatorial patterns, cell-type dependencies, and cross-sample variability of protein-DNA interactions. AVAILABILITY: http://jilab.biostat.jhsph.edu/database/cgi-bin/hmChIP.pl.  相似文献   

9.
A major advance in protein structure determination has been the advent of nanolitre-scale crystallization and (in a high-throughput environment) the development of robotic systems for storing and imaging crystallization trials. Most of these trials are carried out in 96-well (or higher density) plates and managing them is a significant information management challenge. We describe xtalPiMS, a web-based application for the management and monitoring of crystallization trials. xtalPiMS has a user-interface layer based on the standards of the Protein Information Management System (PiMS) and a database layer which links the crystallization trial images to the meta-data associated with a particular crystallization trial. The user interface has been optimized for the efficient monitoring of high-throughput environments with three different automated imagers and work to support a fourth imager is in progress, but it can even be of use without robotics. The database can either be a PiMS database or a legacy database for which a suitable mapping layer has been developed.  相似文献   

10.
ArrayFusion annotates conventional CGH results and various types of microarray data from a range of platforms (cDNA, expression, exon, SNP, array-CGH and ChIP-on-chip) and converts them into standard formats which can be visualized in genome browsers (Affymetrix Integrated Genome Browser and GBrowse in the HapMap Project). Converted files can then be imported simultaneously into a single genome browser to benefit a collective interpretation between different array results. ArrayFusion therefore provides a new type of tool facilitating the integration of CGH and array results to provide new experimental directions. AVAILABILITY: http://microarray.ym.edu.tw/tools/arrayfusion  相似文献   

11.

Background

When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data.

Results

We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields.

Conclusions

The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.
  相似文献   

12.
13.
SUMMARY: We have created PhenomicDB, a multi-species genotype/phenotype database by merging public genotype/phenotype data from a wide range of model organisms and Homo sapiens. Until now these data were available in distinct organism-specific databases (e.g. WormBase, OMIM, FlyBase and MGI). We compiled this wealth of data into a single integrated resource by coarse-grained semantic mapping of the phenotypic data fields, by including common gene indices (NCBI Gene), and by the use of associated orthology relationships. With its use-case-oriented user interface, PhenomicDB allows scientists to compare and browse known phenotypes for a given gene or a set of genes from different organisms simultaneously. AVAILABILITY: PhenomicDB has been implemented at Schering AG as described below. A PhenomicDB implementation differing in some technical details has been set up for the public at Metalife AG http://www.phenomicDB.de SUPPLEMENTARY INFORMATION: database model, semantic mapping table.  相似文献   

14.
Standard interfaces for data and information access facilitate data management and usability by minimizing the effort required to acquire, catalog and integrate data from a variety of sources. The authors have prototyped several data management and analysis applications using Sensor Web Enablement Services, a suite of service protocols being developed by the Open Geospatial Consortium specifically for handling sensor data in near-real time. This paper provides a brief overview of some of the service protocols and describes how they are used in various sensor web projects involving near-real-time management of sensor data.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Downstream applications in metabolomics, as well as mathematical modelling, require data in a quantitative format, which may also necessitate the automated and simultaneous quantification of numerous metabolites. Although numerous applications have been previously developed for metabolomics data handling, automated calibration and calculation of the concentrations in terms of mumol have not been carried out. Moreover, most of the metabolomics applications are designed for GC-MS, and would not be suitable for LC-MS, since in LC, the deviation in the retention time is not linear, which is not taken into account in these applications. Moreover, only a few are web-based applications, which could improve stand-alone software in terms of compatibility, sharing capabilities and hardware requirements, even though a strong bandwidth is required. Furthermore, none of these incorporate asynchronous communication to allow real-time interaction with pre-processed results. FINDINGS: Here, we present EasyLCMS (http://www.easylcms.es/), a new application for automated quantification which was validated using more than 1000 concentration comparisons in real samples with manual operation. The results showed that only 1% of the quantifications presented a relative error higher than 15%. Using clustering analysis, the metabolites with the highest relative error distributions were identified and studied to solve recurrent mistakes. CONCLUSIONS: EasyLCMS is a new web application designed to quantify numerous metabolites, simultaneously integrating LC distortions and asynchronous web technology to present a visual interface with dynamic interaction which allows checking and correction of LC-MS raw data pre-processing results. Moreover, quantified data obtained with EasyLCMS are fully compatible with numerous downstream applications, as well as for mathematical modelling in the systems biology field.  相似文献   

17.
Data analysis and management represent a major challenge for gene expression studies using microarrays. Here, we compare different methods of analysis and demonstrate the utility of a personal microarray database. Gene expression during HIV infection of cell lines was studied using Affymetrix U-133 A and B chips. The data were analyzed using Affymetrix Microarray Suite and Data Mining Tool, Silicon Genetics GeneSpring, and dChip from Harvard School of Public Health. A small-scale database was established with FileMaker Pro Developer to manage and analyze the data. There was great variability among the programs in the lists of significantly changed genes constructed from the same data. Similarly choices of different parameters for normalization, comparison, and standardization greatly affected the outcome. As many probe sets on the U133 chip target the same Unigene clusters, the Unigene information can be used as an internal control to confirm and interpret the probe set results. Algorithms used for the determination of changes in gene expression require further refinement and standardization. The use of a personal database powered with Unigene information can enhance the analysis of gene expression data.  相似文献   

18.
19.
In this paper, we discuss the properties of biological data and challenges it poses for data management, and argue that, in order to meet the data management requirements for 'digital biology', careful integration of the existing technologies and the development of new data management techniques for biological data are needed. Based on this premise, we present PathCase: Case Pathways Database System. PathCase is an integrated set of software tools for modelling, storing, analysing, visualizing and querying biological pathways data at different levels of genetic, molecular, biochemical and organismal detail. The novel features of the system include: (i) genomic information integrated with other biological data and presented starting from pathways; (ii) design for biologists who are possibly unfamiliar with genomics, but whose research is essential for annotating gene and genome sequences with biological functions; (iii) database design, implementation and graphical tools which enable users to visualize pathways data in multiple abstraction levels and to pose exploratory queries; (iv) a wide range of different types of queries including, 'path' and 'neighbourhood queries' and graphical visualization of query outputs; and (v) an implementation that allows for web (XML)-based dissemination of query outputs (i.e. pathways data in BIOPAX format) to researchers in the community, giving them control on the use of pathways data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号