首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

An increasing number of patients have medical conditions with altered host immunity or that require immunosuppressive medications. While immunosuppression is associated with increased risk of infection, the precise effect of immunosuppression on innate immunity is not well understood. We studied monocyte Toll-like receptor (TLR) expression and cytokine production in 137 patients with autoimmune diseases who were maintained on immunosuppressive medications and 419 non-immunosuppressed individuals.

Methodology/Principal Findings

Human peripheral blood monocytes were assessed for surface expression of TLRs 1, 2, and 4. After incubation with TLR agonists, in vitro production of the cytokines IL-8, TNFα, and MIF were measured by ELISA as a measure of TLR signaling efficiency and downstream effector responsiveness. Immunosuppressed patients had significantly higher TLR4 surface expression when compared to non-immunosuppressed adults (TLR4 %-positive 70.12±2.28 vs. 61.72±2.05, p = 0.0008). IL-8 and TNF-α baseline levels did not differ, but were significantly higher in the autoimmune disease group following TLR stimulation. By contrast, baseline MIF levels were elevated in monocytes from immunosuppressed individuals. By multivariable analyses, IL-8 and TNFα, but not MIF levels, were associated with the diagnosis of an underlying autoimmune disease. However, only MIF levels were significantly associated with the use of immunosuppressive medications.

Conclusions/Significance

Our results reveal that an enhanced innate immune response is a feature of patients with autoimmune diseases treated with immunosuppressive agents. The increased risk for infection evident in this patient group may reflect a dysregulation rather than a simple suppression of innate immunity.  相似文献   

3.
Infants have long been known to have higher infectious diseases morbidity and mortality and suboptimal vaccination responses compared to older children and adults. A variety of differences in innate and adaptive immune responses have been described between these two groups. We compared Toll-like receptor (TLR)-induced production of pro-interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α between 2-month-old infants and adults. TLR 7/8-induced production of pro-IL-1β and IL-6 in monocytes was lower in 2-month-old infants compared to adults. There was no difference in TLR 7/8-induced production of TNF-α. Lower TLR-induced production of pro-IL-1β and IL-6 in innate immune cells during early infancy likely contributes to suboptimal vaccine responses and infectious diseases susceptibility.  相似文献   

4.
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.  相似文献   

5.
Diabetic peripheral neuropathy (DPN) is a major global health threat and a common complication of diabetes. Peripheral nerve complications due to irregular cytokine production are eminent factors in many inflammatory diseases. The present study focused on gene polymorphisms of pro and anti-inflammatory cytokines that may be responsible for nerve damage in diabetic neuropathy. We examined three common functional SNPs primarily at the positions on genes of tumor necrosis alpha (TNFα) −308G/A, interferon gamma (IFNγ) +874A/T and interleukin (IL) 10 −1082G/A in order to establish their association with peripheral neuropathy in type 2 diabetes. Results: Genotypic frequencies obtained from TNFα −308G/A gene analysis in DPN group comprised 86.4% of G/A, 10.6% of G/G and 3% of A/A genotype, where as the control group had 94% of G/A, 2% of G/G and 4% of A/A which could not reach the statistical significance with the disease after Bonferroni correction. The IFNγ +874 A/T polymorphism in patient group revealed 33.3% of A/A, 47.5% of A/T and 19.2% of T/T genotype. The A/A genotype had attained statistical significance of P = 0.04 (P corrected); OR 2; 95% CI 1.14–3.64 when compared to controls. The IL10 −1082 G/A polymorphism in the patient group has showed 62.6% of A/A, 21.2% of G/A, 16.2% of G/G genotype, revealing significant association with G/G genotype (P < 0.01, OR 2.9; 95% CI 1.47–5.84) when compared to controls. Conclusion: Our findings indicate that the tested markers within the IFNγ and IL-10 genes, but not the TNFα gene, are significantly associated with peripheral neuropathy in South Indian type 2 diabetic patients. The study shows that the ‘high-producer’ IL-10 −1082 G/G genotype and the ‘low-producer’ IFNγ +874 A/A genotype may be responsible for the down regulation of immune response leading to inflammation in this setting.  相似文献   

6.
We evaluated whether polymorphisms in genes coding molecules linked to the innate and adaptive immune response are associated with susceptibility to Helicobacter pylori infection. IL1B-511C → T, IL1B-31 T → C, IL1RN allele 2, IL2-330 T → G, TNFA-307 G → A, TLR2Arg677Trp, TLR2Arg753Gln, TLR4Asp299Gly, and TLR5392STOP polymorphisms were determined in 541 blood donors. IL2-330 T → G allele carriers had a decreased H. pylori infection risk (OR = 0.63, 95% CI = 0.43–0.93) after adjustment for demographic and environmental factors. Hence, we investigated whether the polymorphism is functional by evaluating IL-2 serum concentration in 150 blood donors and 100 children. IL-2 pro-inflammatory and anti-inflammatory properties were indirectly investigated by determining serum IFN-γ and IL-10/TGF-β levels. The polymorphism was associated with increased mean IL-2 levels in H. pylori-positive adults (2.65 pg/mL vs. 7.78 pg/mL) and children (4.19 pg/mL vs. 8.03 pg/mL). Increased IL-2 was associated with pro-inflammatory activity in adults (IFN-γ = 18.61 pg/mL vs. 25.71 pg/mL), and with anti-inflammatory activity in children (IL-10 = 6.99 vs. 14.17 pg/mL, TGF-β = 45.88 vs. 93.44 pg/mL) (p < 10−3 for all). In conclusion, in the context of H. pylori infection, IL2-330 T → G polymorphism is functional and is associated with decreased risk of infection in adults.  相似文献   

7.
Recent developments suggest a causal link between inflammation and impaired bacterial clearance in Crohn’s disease (CD) due to alterations of intestinal macrophages. Studies suggest that excessive inflammation is the consequence of an underlying immunodeficiency rather than the primary cause of CD pathogenesis. We characterized phenotypic and functional features of peripheral blood monocytes of patients with quiescent CD (n = 18) and healthy controls (n = 19) by analyses of cell surface molecule expression, cell adherence, migration, chemotaxis, phagocytosis, oxidative burst, and cytokine expression and secretion with or without lipopolysaccharide (LPS) priming. Peripheral blood monocytes of patients with inactive CD showed normal expression of cell surface molecules (CD14, CD16, CD116), adherence to plastic surfaces, spontaneous migration, chemotaxis towards LTB4, phagocytosis of E. coli, and production of reactive oxygen species. Interestingly, peripheral blood monocytes of CD patients secreted higher levels of IL1β (p<.05). Upon LPS priming we found a decreased release of IL10 (p<.05) and higher levels of CCL2 (p<.001) and CCL5 (p<.05). The expression and release of TNFα, IFNγ, IL4, IL6, IL8, IL13, IL17, CXCL9, and CXCL10 were not altered compared to healthy controls. Based on our phenotypic and functional studies, peripheral blood monocytes from CD patients in clinical remission were not impaired compared to healthy controls. Our results highlight that defective innate immune mechanisms in CD seems to play a role in the (inflamed) intestinal mucosa rather than in peripheral blood.  相似文献   

8.
Signal transduction via NFκB and MAP kinase cascades is a universal response initiated upon pathogen recognition by Toll-like receptors (TLRs). How activation of these divergent signaling pathways is integrated to dictate distinct immune responses to diverse pathogens is still incompletely understood. Herein, contrary to current perception, we demonstrate that a signaling pathway defined by the inhibitor of κB kinase β (IKKβ), MAP3 kinase tumor progression locus 2 (Tpl2/MAP3K8), and MAP kinase ERK is differentially activated by TLRs. TLRs 2, 4, and 7 directly activate this inflammatory axis, inducing immediate ERK phosphorylation and early TNFα secretion. In addition to TLR adaptor proteins, IKKβ-Tpl2-ERK activation by TLR4 is regulated by the TLR4 co-receptor CD14 and the tyrosine kinase Syk. Signals from TLRs 3 and 9 do not initiate early activation of IKKβ-Tpl2-ERK pathway but instead induce delayed, NADPH-oxidase-dependent ERK phosphorylation and TNFα secretion via autocrine reactive oxygen species signaling. Unexpectedly, Tpl2 is an essential regulator of ROS production during TLR signaling. Overall, our study reveals distinct mechanisms activating a common inflammatory signaling cascade and delineates differences in MyD88-dependent signaling between endosomal TLRs 7 and 9. These findings further confirm the importance of Tpl2 in innate host defense mechanisms and also enhance our understanding of how the immune system tailors pathogen-specific gene expression patterns.  相似文献   

9.
10.
In West Africa, Trypanosoma brucei gambiense, causing human African trypanosomiasis (HAT), is associated with a great diversity of infection outcomes. In addition to patients who can be diagnosed in the early hemolymphatic phase (stage 1) or meningoencephalitic phase (stage 2), a number of individuals can mount long-lasting specific serological responses while the results of microscopic investigations are negative (SERO TL+). Evidence is now increasing to indicate that these are asymptomatic subjects with low-grade parasitemia. The goal of our study was to investigate the type of immune response occurring in these “trypanotolerant” subjects. Cytokines levels were measured in healthy endemic controls (n = 40), stage 1 (n = 10), early stage 2 (n = 19), and late stage 2 patients (n = 23) and in a cohort of SERO TL+ individuals (n = 60) who were followed up for two years to assess the evolution of their parasitological and serological status. In contrast to HAT patients which T-cell responses appeared to be activated with increased levels of IL2, IL4, and IL10, SERO TL+ exhibited high levels of proinflammatory cytokines (IL6, IL8 and TNFα) and an almost absence of IL12p70. In SERO TL+, high levels of IL10 and low levels of TNFα were associated with an increased risk of developing HAT whereas high levels of IL8 predicted that serology would become negative. Further studies using high throughput technologies, hopefully will provide a more detailed view of the critical molecules or pathways underlying the trypanotolerant phenotype.  相似文献   

11.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

12.
Dogi CA  Galdeano CM  Perdigón G 《Cytokine》2008,41(3):223-231
We analyzed the gut immune stimulation induced by Gram-positive bacteria: non probiotic Lactobacillus acidophilus CRL 1462 and Lactobacillus acidophilus A9; two potentially probiotic strains: L. acidophilus CRL 924 and Lactobacillus delbrueckii subsp. bulgaricus CRL 423; comparatively with a probiotic strain: Lactobacillus casei CRL 431. We also studied Gram-negative bacteria: Escherichia coli 129 and E. coli 13-7 in BALB/c mice. All the strains increased the number of IgA+ cells. We analyzed the cytokines IFNγ, TNFα, IL-17, IL-12, IL-6 and MIP-1α. The Gram(+) strains increased the number of IL-10+ cells. Gram(−) strains did not increase IL-10+ cells, but they increased the number of IL-12+ cells. The probiotic strain increased mainly IFNγ and TNFα. In the study of the receptors TLR-2, TLR-4 and CD-206, we demonstrated that only the probiotic strain increased the number of CD-206+ cells. All the Gram(+) strains increased the number of TLR-2+ cells and the Gram(−) strains of the TLR-4+ cells. The probiotic strain induced the release of IL-6 by a preparation enriched in intestinal epithelial cells (IEC). Gram(+) and Gram(−) bacteria activated different immune receptors and induced a different cytokine profile. The probiotic strain showed a great activity on the immune cells and the enriched population in IEC, activating mainly cells of the innate immune system.  相似文献   

13.
Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin‐10 (IL‐10) gene regulates the production capacities of IL‐10 and tumour necrosis factor‐α (TNF‐α). In rural Ghana, IL‐10 gene variants associated with different production capacities of IL‐10 and TNF‐α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL‐10 gene, production capacities of IL‐10 and TNF‐α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro‐inflammatory haplotypes associated with low IL‐10 production capacity and anti‐inflammatory haplotypes with high IL‐10 production capacity. We found that distinct haplotypes of the IL‐10 gene associated with handgrip strength. A pro‐inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (= 0.015). An anti‐inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (= 0.006). In conclusion, variants of the IL‐10 gene contributing to a pro‐inflammatory cytokine response associate with higher muscle strength, whereas those with anti‐inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL‐10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases.  相似文献   

14.
IntroductionInnate immune responses, including monocyte functions, seem to play an important role in the pathogenesis of axial spondyloarthritis (axSpA). Therefore, we characterized the phenotype and functional state of monocytes of patients with axSpA.MethodsFifty-seven patients with axSpA, 11 patients with rheumatoid arthritis (RA), and 29 healthy controls were included in the study. We determined the percentage of classic, intermediate, and non-classic monocytes according to CD14 and CD16 expression and the expression of Toll-like receptor (TLR) 1, 2, and 4 in whole blood by flow cytometry. The percentage of monocytes producing interleukin (IL)-1beta, IL-6, tumor necrosis factor alpha (TNFα), IL-12/23p40, and IL-1 receptor antagonist (IL-1ra) was detected by flow cytometry after stimulation of whole blood without and with different TLR and nucleotide-binding oligomerization domain ligands—i.e., lipopolysaccharide (LPS), fibroblast-stimulating lipopeptid-1, PAM3CSK4, and muramyl dipeptide (MDP)—for 5 h. IL-10 production was measured after 18 h of stimulation in supernatants by enzyme-linked immunosorbent assay.ResultsIn patients with axSpA but not patients with RA, we found higher frequencies of classic monocytes than in controls (median of 90.4 % versus 80.4 %, P < 0.05), higher frequencies of monocytes spontaneously producing IL-1beta and IL-1ra (P < 0.05), and a higher percentage of monocytes producing IL-1beta after MDP stimulation (P < 0.05). Elevated cytokine production was confined to axSpA patients under conventional therapy (non-steroidal anti-inflammatory drugs) and not found in patients under TNFα inhibitor treatment. The LPS-induced production of IL-6 and IL-10 was lower in axSpA patients compared with controls (P < 0.05). Monocytic TLR expression was unaffected in patients with axSpA.ConclusionEnhanced spontaneous and MDP-induced cytokine secretion by monocytes suggests in vivo pre-activation of monocytes in axSpA patients under conventional therapy which is reverted under TNF inhibitor treatment.  相似文献   

15.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system.  相似文献   

16.
Innate immune responses have a critical role in regulating sight-threatening ocular surface (OcS) inflammation. While glucocorticoids (GCs) are frequently used to limit tissue damage, the role of intracrine GC (cortisol) bioavailability via 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in OcS defense, remains unresolved. We found that primary human corneal epithelial cells (PHCEC), fibroblasts (PHKF) and allogeneic macrophages (M1, GM-CSF; M2, M-CSF) were capable of generating cortisol (M1>PHKF>M2>PHCEC) but in corneal cells, this was independent of Toll-like receptor (TLR) activation. While PolyI∶C induced maximal cytokine and chemokine production from both PHCEC (IFNγ, CCL2, CCL3, and (CCL4), IL6, CXCL10, CCL5, TNFα) and PHKF (CCL2, IL-6, CXCL10, CCL5), only PHKF cytokines were inhibited by GCs. Both Poly I∶C and LPS challenged-corneal cells induced M1 chemotaxis (greatest LPS-PHKF (250%), but down-regulated M1 11β-HSD1 activity (30 and 40% respectively). These data were supported by clinical studies demonstrating reduced human tear film cortisol∶cortisone ratios (a biomarker of local 11β-HSD1 activity) in pseudomonas keratitis (1∶2.9) versus healthy controls (1∶1.3; p<0.05). This contrasted with putative TLR3-mediated OcS disease (Stevens-Johnson Syndrome, Mucous membrane pemphigoid) where an increase in cortisol∶cortisone ratio was observed (113.8∶1; p<0.05). In summary, cortisol biosynthesis in human corneal cells is independent of TLR activation and is likely to afford immunoprotection under physiological conditions. Contribution to ocular mucosal innate responses is dependent on the aetiology of immunological challenge.  相似文献   

17.
Dzherelo (Immunoxel) and Anemin when combined with standard anti-tuberculosis therapy (ATT) were shown to produce better clinical outcome than chemotherapy alone. Sixty HIV-positive patients with active pulmonary TB were equally divided into three matched groups to receive either ATT, ATT + Dzherelo, or ATT + Dzherelo + Anemin. Peripheral blood samples were measured by ELISA for plasma levels of IL-2, IL-6, TNF-α, IFN-γ, and IFN-α. After 6 months of follow-up Dzherelo and Dzherelo + Anemin combinations produced 61% (P = 0.005) and 44.4% (P = 0.06) higher levels of IL-2, whereas in ATT group they were reduced by 33.1% (P = 0.002). The levels of IL-6 increased by 17% (P = 0.15) in ATT group, but declined in both immune intervention groups by 26.2% (P = 0.007) and 21.3% (P = 0.22). TNF-α was suppressed in two immunotherapy groups by 19.1% (P = 0.06) and 76.3% (P = 0.02), respectively, but had risen by 14% (P = 0.42) in ATT patients. The pattern of production of IFN-γ was opposite to that of TNF-α, but statistical significance was stronger in patients receiving ATT and Dzherelo + Anemin than in Dzherelo group: −34% (P = 0.004), +31.9% (P = 0.008), and +17.3% (P = 0.33), respectively. Moderately decreased levels of IFN-α were observed in all treatment arms (range 0.9–16.6%) but differences were not significant. Despite considerable intra-group variation in cytokine production, the baseline inter-group averages were not statistically different indicating that the results were not biased by sample heterogeneity. Immunomodulators used in this study possibly act by enhancing natural immune response against TB. Expanded study of other cytokines and correlates relevant to control and protection from TB and HIV is needed in order to identify biomarkers of favorable treatment outcome, which may aid design of better immune interventions and vaccines.  相似文献   

18.
Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and –C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.  相似文献   

19.
Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号