首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).  相似文献   

2.
In this study, 23 Debaryomyces hansenii strains, isolated from cheese and fish gut, were investigated in vitro for potential probiotic properties i.e. (1) survival under in vitro GI (gastrointestinal) conditions with different oxygen levels, (2) adhesion to Caco-2 intestinal epithelial cells and mucin, and (3) modulation of pro- and anti-inflammatory cytokine secretion by human monocyte-derived dendritic cells. As references two commercially available probiotic Saccharomyces cerevisiae var. boulardii (S. boulardii) strains were included in the study. Our results demonstrate that the different D. hansenii yeast strains had very diverse properties which could potentially lead to different probiotic effects. One strain of D. hansenii (DI 09) was capable of surviving GI stress conditions, although not to the same degree as the S. boulardii strains. This DI 09 strain, however, adhered more strongly to Caco-2 cells and mucin than the S. boulardii strains. Additionally, two D. hansenii strains (DI 10 and DI 15) elicited a higher IL-10/IL-12 ratio than the S. boulardii strains, indicating a higher anti-inflammatory effects on human dendritic cells. Finally, one strain of D. hansenii (DI 02) was evaluated as the best probiotic candidate because of its outstanding ability to survive the GI stresses, to adhere to Caco-2 cells and mucin and to induce a high IL-10/IL-12 ratio. In conclusion, this study shows that strains of D. hansenii may offer promising probiotic traits relevant for further study.  相似文献   

3.
In the present study, the probiotic properties of 52 lactic acid bacteria strains, isolated from the intestinal mucosa of 60-day-old healthy piglets, were evaluated in vitro in order to acquire probiotics of potential application. Based on acidic and bile salt resistance, 11 lactic acid bacteria strains were selected, among which 1 was identified as Pediococcus acidilactici, 3 as Enterococcus faecium, 3 as Lactobacillus rhamnosus, 2 as Lactobacillus brevis, and 2 as Lactobacillus plantarum by 16S rRNA gene sequencing. All selected strains were further investigated for transit tolerance in simulated upper gastrointestinal tract, for adhesion capacity to swine intestinal epithelial cells J2 (IPEC-J2), for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for antimicrobial activities. Moreover, hemolytic, bile salt hydrolase and biogenic amine-producing abilities were investigated for safety assessment. Two E. faecium (WEI-9 and WEI-10) and one L. plantarum (WEI-51) exhibited good simulated upper gastrointestinal tract tolerance, and showed high auto-aggregation and co-aggregation with Escherichia coli 1570. The strains WEI-9 and WEI-10 demonstrated the highest adherence capacity. The 11 selected strains mentioned above exhibited strong antimicrobial activity against E. coli CVCC1570, Staphylococcus aureus CVCC1882 and Salmonella pullorum AS1.1859. None of the 11 selected strains, except WEI-9 and WEI-33, exhibited bile salt hydrolase, hemolytic or biogenic amine-producing abilities. This work showed that the E. faecium WEI-10 and L. plantarum WEI-51were found to have the probiotic properties required for use as potential probiotics in animal feed supplements.  相似文献   

4.
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).  相似文献   

5.
Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.  相似文献   

6.
To screen the lactic acid bacteria with cholesterol-lowering and triglyceride-lowering activity in vitro and evaluate their probiotic function. By plate separating, cholesterol-lowering and triglyceride-lowering activity in vitro were determined; and by evaluating the probiotic functions, including tolerances to simulated gastric and intestinal juice, the antibacterial spectrum, and the adhesion ability to Caco-2 cells, the probiotic strains with cholesterol-lowering and triglyceride-lowering activity in vitro were screened, and then were identified by phenotypical and physiological tests and 16Sr DNA. Finally, the cholesterol-lowering and triglyceride-lowering activity in vivo of the strains were evaluated using male Sprague-Dawley rats. Two strains L2-16 and L2-73 with stronger cholesterol-lowering and triglyceride-lowering activity in vitro, stronger tolerance to simulated gastric and intestinal juice and adhesion ability to Caco-2 cells, and wider antibacterial spectrum were screened from traditional Chinese fermented cucumber and were identified as Lactobacillus acidophilus and Enterococcus faecalis, respectively. Compared with a hyperlipidemia diet without lactic acid bacteria, the diet supplemented with Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 significantly reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels, and liver total cholesterol and triglyceride levels in rats (P?<?0.05). Moreover, the diet supplemented with Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 significantly increased the fecal elimination of bile acids (P?<?0.05). Lactobacillus acidophilus L2-16 and Enterococcus faecalis L2-73 may have application prospect in the production of some fermented foods such as fermented vegetables, milk, or meat, and probiotic preparations with the function to lower the serum lipid and liver lipid levels.  相似文献   

7.
The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.  相似文献   

8.
The present study shows that, from 300 Lactobacillus strains isolated from the oral cavity and large intestine of 600 healthy people, only 9 had high antagonistic activity against pathogens and opportunistic pathogens. All antagonistic strains of lactobacilli have been identified by 16S rRNA sequencing and assigned to four species: Lactobacillus fermentum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei. In addition, these lactobacilli appeared to be nonpathogenic and had some probiotic potential: the strains produced lactic acid and bacteriocins, showed high sensitivity to broad-spectrum antibiotics, and were capable of forming biofilms in vitro. With the help of PCR and specific primers, the presence of genes for prebacteriocins in L. plantarum (plnEF, plnJ, plnN) and L. rhamnosus (LGG_02380 and LGG_02400) has been revealed. It was found that intestinal strains of lactobacilli were resistant to hydrochloric acid and bile. Lactobacilli isolated from the oral cavity were characterized by a high degree of adhesion, whereas intestinal strains were characterized by average adhesion. Both types of lactobacilli had medium to high rates of auto-aggregation and hydrophobicity and could coaggregate with pathogens and opportunistic pathogens. Additionally, the ability of the lactobacilli strains to produce gasotransmitters, CH4, CO2, C2H6, CO, and NH3, has been revealed.  相似文献   

9.
The aim of this study was to evaluate probiotic properties of antimicrobial Lactobacillus plantarum VJC38 in vitro. L. plantarum VJC38 was isolated from the crop of broiler chicken and characterized using dnaK gene sequence. The inhibitory activities of L. plantarum VJC38 against bacterial and fungal pathogens were evaluated. Antifungal compounds secreted by the strain VJC38 were identified using Gas Chromatography and Mass Spectrometry (GC-MS). The strain was evaluated for its tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with pathogenic Escherichia coli, cell surface hydrophobicity, cholesterol lowering activity, β-galactosidase production, adhesion ability to Caco-2 cells, mucin degradation, hemolytic activity and biogenic amine production. Phylogenetic analysis of dnaK gene of bacterial strain VJC38 showed 99% sequence similarity to Lactobacillus plantarum var. plantarum. It showed effective inhibition against food spoiling and pathogenic organisms like Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, Penicillium expansum and Eurotium species. The antifungal compound phenol- 2,4-bis(1,1-dimethylethyl) (PD) was identified in the culture filtrate of L. plantarum VJC38 and reported to have inhibition against Aspergillus species. L. plantarum VJC38 exhibited tolerance to low pH, resistance to bile salts, bile salt hydrolase activity, auto-aggregation (87.5%), co-aggregation with Escherichia coli (55.7%), cholesterol lowering activity (64%), β-galactosidase production (1206 MU), adherence to Caco-2 cells (11%), negative for mucin degradation, hemolytic activity and biogenic amine production. L. plantarum VJC38 could be a good candidate for further investigation in vivo to elucidate its health benefits and to evaluate its technological properties as a bio-protective strain.  相似文献   

10.
Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami “shpek” and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.  相似文献   

11.
The probiotic properties and inhibitory effect on Salmonella Typhimurium adhesion on human enterocyte-like HT-29-Luc cells of three Lactobacillus plantarum strains isolated from fermented fish, beach sand and a coastal plant were determined. Compared with the type strain L. plantarum NBRC 15891T, which was isolated from pickled cabbage, L. plantarum Tennozu-SU2 isolated from the acorn of a coastal tree showed high autoaggregation in de Man, Rogosa and Sharpe (MRS) broth and an antagonistic effect against S. Typhimurium in brain heart infusion (BHI) broth. Furthermore, heat-killed L. plantarum Tennozu-SU2 cells inhibited S. Typhimurium adhesion on HT-29-Luc cells. Both live and heat-killed L. plantarum Tennozu-SU2 cells showed an inhibitory effect on gut colonisation in BALB/c mice, as assessed by viable Salmonella count in faecal samples and by invasion into liver and spleen tissues. The properties shown in this study suggest that L. plantarum Tennozu-SU2 is useful as a starter and probiotic bacteria in functional food material.  相似文献   

12.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

13.
Considerable variations among probiotics with respect to their health benefitting attributes fuel the research on bioprospecting of proficient probiotic strains from various ecological niches especially the poorly unexplored ones. In the current study, kalarei, an indigenous cheese-like fermented milk product, and other dairy-based sources like curd and raw milk were used for isolation of lactic acid bacteria (LAB). Among 34 LAB isolates, 7 that could withstand simulated gastrointestinal (GI) conditions were characterized for functional probiotic attributes, viz. adhesion ability, aggregation and coaggregation, extracellular enzyme producing capability, antibacterial activity against pathogens and antibiotic resistance. The isolate M-13 (from kalarei) which exhibited most of the desirable probiotic functional properties was identified as Lactobacillus plantarum based on 16S ribosomal DNA sequence analysis and designated as L. plantarum M-13. The sequence was submitted to GenBank (accession number KT592509). The study presents the first ever report of isolation of potential probiotic LAB, i.e. L. plantarum M-13 from indigenous food kalarei, and its application for development of potential probiotic fermented oat flour (PFOF). PFOF was analysed for parameters like viability of L. plantarum M-13, acidity and pH. Results show that PFOF serves as a good matrix for potential probiotic L. plantarum M-13 as it supported adequate growth of the organism (14.4 log cfu/ml after 72 h of fermentation). In addition, appreciable acid production by L. plantarum M-13 and consequential pH reduction indicates the vigorous and active metabolic status of the potential probiotic organism in the food matrix. Thus, study shows that fermented oat flour may possibly be developed as a potential probiotic carrier especially in view of the problems associated with dairy products as probiotic vehicles.  相似文献   

14.
The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.  相似文献   

15.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

16.
Lactic acid bacteria (LAB) are widely known as probiotic microorganisms that afford several health benefits for the host. In this study, 15 isolates of LAB from various sources in Thailand were examined for their probiotic properties. Based on their phenotypic and genetic characteristics, they belong to the genera Lactobacillus, Pediococcus, and Weissella. All isolates showed the ability to induce interleukin-12 (IL-12) at different levels. Cell-free supernatant of Lactobacillus acidipiscis SR7-1 and Lactobacillus farraginis SL4-1 showed an antiproliferative effect against Caco-2 cell lines with non-toxicity to normal cell lines (Vero cells), while they had no effect against U937 cell lines. Five strains, including Lactobacillus namurensis KC78-5, L. farraginis SL4-1, Lactobacillus mucosae SL7-2, Lactobacillus salivarius MSMC120-2 and Pediococcus pentosaceus PC73-3 grew at pH 3. All isolates were tolerant at 1% bile. L. farraginis SL4-1, L. mucosae SL7-2 and P. pentosaceus PC73-3 were not statistically different when compared to the negative control in vitro adhesion assay. These results suggest that L. farraginis SL4-1, L. mucosae SL7-2 and P. pentosaceus PC73-3, which meet the general criteria of probiotics, represent very interesting candidates for further study as anti-cancer agents, especially L. farraginis SL4-1, which has an antiproliferative effect against Caco-2 cells and immunomodulatory ability. These results also highlight the need for further study, especially in appropriate in vivo animal models.  相似文献   

17.
Bacterial species of Bacillus, Lactobacillus, and Bifidobacterium in the intestinal tract have been used as probiotics. Selections for probiotic candidates by the culture-based approaches are time-consuming and labor-consuming. The aim of this study was to develop a new method based on sequencing strategies to select the probiotic Bacillus, Lactobacillus, and Bifidobacterium. The Illumina-based sequencing strategies with different specific primers for Bacillus, Clostridium, and Bifidobacterium were applied to analyze diversity of the genera in goat feces. The average number of different Bacillus, Clostridium, and Bifidobacterium OTUs (operational taxonomic units) at the 97% similarity level ranged from 1922 to 63172. The coverage index values of Bacillus, Clostridium, and Bifidobacterium calculated from the bacterial OTUs were 0.89, 0.99, and 1.00, respectively. The most genera of Bacillus (37.9%), Clostridium (53%), and Bifidobacterium (99%) were detected in goat feces by the Illumina-based sequencing with the specific primers of the genera, respectively. Higher phylogenetic resolutions of the genera in goat feces were successfully established. The results suggest that the selection for probiotic Bacillus, Clostridium, and Bifidobacterium based on the Illumina sequencing with their specific primers is reliable and feasible, and the core Bacillus, Clostridium, and Bifidobacterium species of healthy goats possess the potentials as probiotic microbial consortia.  相似文献   

18.
Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains’ survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1–4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.  相似文献   

19.

Objectives

The objective of this study was to evaluate the ability of Lactobacillus curvatus CRL705, CRL1532, and CRL1533 and Lactobacillus sakei CRL1613 to survive under simulated gastrointestinal conditions. Moreover, a microencapsulation approach was proposed to improve gastrointestinal survival. Finally, experiments were performed to demonstrate that Lactobacillus spp. can modulate the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells.

Results

Lactobacillus strains were encapsulated in alginate beads to enhance the survival of bacteria under in vitro gastrointestinal conditions. All strains hydrolyzed bile salts using chenodeoxycholic acid as a substrate and adhered to Caco-2 cells. Cell-free supernatants (CFSs) showed antimicrobial activity against L. monocytogenes as demonstrated by agar diffusion assays. The average percentages of L. monocytogenes adhesion decreased from 67.74 to 41.75 and 38.7% in the presence of 50 and 90% (v/v), respectively, for all CFSs tested. The highest concentrations of CFSs completely inhibited the L. monocytogenes invasion of Caco-2 cells.

Conclusions

The studied Lactobacillus strains have protective effects against the adhesion and invasion of L. monocytogenes FBUNT. Alginate encapsulation of these bacteria improved gastrointestinal tolerance such that they could be further studied as potential probiotics against intestinal pathogenic bacteria.
  相似文献   

20.

Background

The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health.

Results

An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co-incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system.

Conclusions

L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号