首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the potential of eight fungal isolates obtained from soils in rice crops for straw degradation in situ. From the initial eight isolates, Pleurotus ostreatus T1.1 and Penicillium sp. HC1 were selected for further characterization based on qualitative cellulolytic enzyme production and capacity to use rice straw as a sole carbon source. Subsequently, cellulolytic, xylanolytic, and lignolytic (Pleurotus ostreatus) activity on carboxymethyl cellulose, oat xylan, and rice straw with different nitrogen sources was evaluated. From the results obtained it was concluded both isolates are capable to produce enzymes necessary for rice straw degradation. However, their production is dependent upon carbon and nitrogen source. Last, it was established that Pleurotus ostreatus T1.1 and Penicillium sp. HC1 capability to colonize and mineralize rice straw, in mono-and co-culture, without affecting nitrogen soil content.  相似文献   

2.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, the most devastating bacterial disease of rice worldwide. The major disease resistance gene Xa3/Xa26 confers a durable resistance to Xoo with a dosage effect. However, the mechanism of Xa3/Xa26-mediated resistance remains to be elucidated. We created near-isogenic lines carrying Xa3/Xa26 with a background of indica and japonica, the two major subspecies of Asian cultivated rice. Analyzing these rice lines showed that the japonica background facilitated resistance to Xoo, which was associated with increased Xa3/Xa26 expression, compared with rice lines with an indica background. This characteristic of Xa3/Xa26 was related to the WRKY45 locus, which had higher expression with the japonica background than with the indica background. However, the two alleles of the WRKY45 locus had different expression levels, with the WRKY45-1 expression level being higher than that of WRKY45-2 for both japonica and indica backgrounds. In addition, the resistance level conferred by Xa3/Xa26 was higher in the presence of WRKY45-1 than in the presence of WRKY45-2 for both japonica and indica backgrounds. Xa3/Xa26-mediated resistance was associated with increased accumulation of jasmonic acid (JA), JA-isoleucine, and terpenoid and flavonoid phytoalexins. Exogenous JA application enhanced Xa3/Xa26-mediated resistance. These results not only provide more knowledge toward understanding the mechanism of Xa3/Xa26-mediated resistance but also offer the best choice for using Xa3/Xa26 for rice resistance improvement, specifically, a japonica background with the WRKY45-1 allele.  相似文献   

3.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

4.
5.
6.
We aimed to evaluate the capability of bio-organic fertilizer suppressing watermelon Fusarium wilt disease, compare the variations of the rhizosphere bacterial and fungal community compositions after treatment with different fertilizers, and explore mechanisms causing disease suppression in rhizosphere microbial community. A rhizobacterium (Bacillus amyloliquefaciens JDF35) was identified to control watermelon Fusarium wilt disease. Bio-organic fertilizer JDF35 (BOF) was generated by inoculating JDF35 into the organic fertilizer (OF) composed of cow and chicken manure compost (1:50 v/w). A three successive growing season pot experiment was designed to evaluate the effects of BOF compared with OF and chemical fertilizer (CF). Next-generation sequencing using the Illumina MiSeq platform was used to investigate the variations in rhizosphere microbial community composition. The growth of the watermelon plants, soil pH, and available N, P and K concentrations were the highest in the BOF treatment. The Fusarium wilt incidence in the BOF treatment was lower than that in the CF and OF treatment, and the differences for disease incidence were significant (P < 0.001). The diversity of the rhizosphere bacterial community was higher, and that of the fungal was lower in the BOF treatment. Most importantly, the BOF treatment had lowest abundances of Fusarium. The application of the BOF altered the composition of rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant growth.  相似文献   

7.
8.
Rice (Oryza sativa L.) is the staple food crop for more than half of the world’s population. The development of hybrid rice is a practical approach to increase rice production. However, rice production was frequently affected by biotic and abiotic stresses. Rice blast and bacterial blight are two major diseases in rice growing regions. Rice plantation is also frequently affected by short-term submergence or seasonal floods in wet seasons and drought in dry seasons. The utilization of natural disease resistance (R) genes and stress tolerance genes in rice breeding is the most economic and efficient way to combat or adapt to these biotic and abiotic stresses. Rice cultivar 9311 is widely planted rice variety, either as inbred rice or the paternal line of two-line hybrid rice. Here, we report the pyramiding of rice blast R gene Pi9, bacterial blight R genes Xa21 and Xa27, and submergence tolerance gene Sub1A in 9311 genetic background through backcrossing and marker-assisted selection. The improved rice line, designated as 49311, theoretically possesses 99.2% genetic background of 9311. 49311 and its hybrid rice, GZ63S/49311, conferred disease resistance to rice blast and bacterial blight and showed tolerance to submergence for over 18 days without significant loss of viability. 49311 and its hybrids had similar agronomic traits and grain quality to 9311 and the control hybrid rice, respectively. The development of 49311 provides an improved paternal line for two-line hybrid rice production with disease resistance to rice blast and bacterial blight and tolerance to submergence.  相似文献   

9.
10.
Farmed sea cucumbers (Apostichopus japonicus) of the same age displayed significantly different body sizes and weights under the same farming conditions. To examine the gut bacterial diversity of sea cucumbers and whether the growth differences between them were related to intestinal microbiota, the bacterial species from intestinal samples of 30 farmed A. japonicus from the same tank (15 large sea cucumbers vs. 15 small sea cucumbers) were characterized based on 16S rRNA gene analysis by means of high throughout sequencing. The results showed that bacterial phylotypes in both sizes of sea cucumbers were closely related to Proteobacteria, Verrucomicrobia, Bacteroidetes, Actinobacteria, Firmicutes, Cyanobacteria, Planctomycete, and Spirochaetes, of which Proteobacteria were predominant (>50%). There were no significant differences in the relative abundances of each bacterial phylotype between the two groups, except for Actinobacteria (P < 0.05). In addition, different species uniquely belonging to all three tested samples in the large group and the small group were found. It was interestingly that Vibrio were absent from both groups. It is likely that the differences in the abundances of Actinobacteria and different species in the two groups may be related to their remarkable disparities in body sizes.  相似文献   

11.

Background

Blastocystis sp. is a unicellular eukaryote that is commonly found in the human intestine. Its ability to cause disease is debated and a subject for ongoing research. In this study, faecal samples from 35 Swedish university students were examined through shotgun metagenomics before and after travel to the Indian peninsula or Central Africa. We aimed at assessing the impact of travel on Blastocystis carriage and seek associations between Blastocystis and the bacterial microbiota.

Results

We found a prevalence of Blastocystis of 16/35 (46%) before travel and 15/35 (43%) after travel. The two most commonly Blastocystis subtypes (STs) found were ST3 and ST4, accounting for 20 of the 31 samples positive for Blastocystis. No mixed subtype carriage was detected. All ten individuals with a typable ST before and after travel maintained their initial ST. The composition of the gut bacterial community was not significantly different between Blastocystis-carriers and non-carriers. Interestingly, the presence of Blastocystis was accompanied with higher abundances of the bacterial genera Sporolactobacillus and Candidatus Carsonella. Blastocystis carriage was positively associated with high bacterial genus richness, and negatively correlated to the Bacteroides-driven enterotype. These associations were both largely dependent on ST4 – a subtype commonly described from Europe – while the globally prevalent ST3 did not show such significant relationships.

Conclusions

The high rate of Blastocystis subtype persistence found during travel indicates that long-term carriage of Blastocystis is common. The associations between Blastocystis and the bacterial microbiota found in this study could imply a link between Blastocystis and a healthy microbiota as well as with diets high in vegetables. Whether the associations between Blastocystis and the microbiota are resulting from the presence of Blastocystis, or are a prerequisite for colonization with Blastocystis, are interesting questions for further studies.
  相似文献   

12.
13.
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.  相似文献   

14.
15.
Lanzhou lily (Liliumdavidii var. unicolor) is the best edible lily as well as a traditional medicinal plant in China. The microbes associated with plant roots play crucial roles in plant growth and health. However, little is known about the differences of rhizosphere microbes between healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants. The objective of this study was to compare the rhizosphere microbial community and functional diversity of healthy and wilted plants, and to identify potential biocontrol agents with significant effect. Paired end Illumina Mi-Seq sequencing of 16S rRNA and ITS gene amplicons was employed to study the bacterial and fungal communities in the rhizosphere soil of Lanzhou lily plants. BIOLOG technology was adopted to investigate the microbial functional diversity. Our results indicated that there were major differences in the rhizosphere microbial composition and functional diversity of wilted samples compared with healthy samples. Healthy Lanzhou lily plants exhibited lower rhizosphere-associated bacterial diversity than diseased plants, whereas fungi exhibited the opposite trend. The dominant phyla in both the healthy and wilted samples were Proteobacteria and Ascomycota, i.e., 34.45 and 64.01 %, respectively. The microbial functional diversity was suppressed in wilted soil samples. Besides Fusarium, the higher relative abundances of Rhizoctonia, Verticillium, Penicillium, and Ilyonectria (Neonectria) in the wilted samples suggest they may pathogenetic root rot fungi. The high relative abundances of Bacillus in Firmicutes in healthy samples may have significant roles as biological control agents against soilborne pathogens. This is the first study to find evidence of major differences between the microbial communities in the rhizospheric soil of healthy and wilted Lanzhou lily, which may be linked to the health status of plants.  相似文献   

16.
In this paper, we characterized a differentially expressed receptor-like cytoplasmic kinase XCRK, which confers resistance to bacterial leaf streak (BLS). We analyzed the tissue expression of XCRK and showed that XCRK was widely expressed in multiple rice (Oryza sativa) organs, including internodes, roots, leaves and flowers. In addition, the expression of XCRK was significantly induced by ABA, salt and H2O2 treatments, suggesting its function in these pathways. The XCRK-overexpressing transgenic seedlings exhibited higher tolerance to Xanthomonas oryzae pv.oryzicola (Xoc) compared with the wild-type seedlings. Furthermore, XCRK-overexpressing seedlings showed stronger antioxidant capacity with reduced MDA and H2O2 content and higher antioxidant enzyme activities. It has been hypothesized that the enhanced Xoc tolerance was attributed to the improved expression of resistance-responsive factors positively regulated by XCRK. In accordance with this, the expression of resistance and oxidation-related genes Wrky77, Wrky13, PAL1, PR5, Fe-SOD and SodCc2 were up-regulated by the overexpression of XCRK, which might contribute collectively to the increased Xoc tolerance. Overall, overexpression of XCRK could enhance the antioxidant capacity and Xoc tolerance in rice.  相似文献   

17.
18.
19.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

20.

Background

Neurofibromatosis type 1 (NF1) is a dominantly inherited tumor predisposition syndrome that targets the peripheral nervous system. It is caused by mutations of the NF1 gene which serve as a negative regulator of the cellular Ras/MAPK (mitogen-activated protein kinases) signaling pathway. Owing to the complexity in some parts of clinical diagnoses and the need for better understanding of its molecular relationships, a genetic characterization of this disorder will be helpful in the clinical setting.

Methods

In this study, we present a customized targeted gene panel of NF1/KRAS/BRAF/p53 and SPRED1 genes combined with Multiple Ligation-Dependent Probe Amplification analysis for the NF1 mutation screening in a cohort of patients clinically suspected as NF1.

Results

In this study, we identified 73 NF1 mutations and two BRAF novel variants from 100 NF1 patients who were suspected as having NF1. These genetic alterations are heterogeneous and distribute in a complicated way without clustering in either cysteine–serine-rich domain or within the GAP-related domain. We also detected fifteen multi-exon deletions within the NF1 gene by MLPA Analysis.

Conclusions

Our results suggested that a genetic screening using a NGS panel with high coverage of Ras–signaling components combined with Multiple Ligation-Dependent Probe Amplification analysis will enable differential diagnosis of patients with overlapping clinical features.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号