首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune thyroiditis (EAT) can be adoptively transferred to normal syngeneic recipients using spleen cells from susceptible strains of mice primed in vivo with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) following in vitro activation of spleen cells by culture with MTg. Irradiation of recipient animals markedly augments the severity of thyroiditis induced in this system. Irradiation of recipients does not alter the time course of the development of thyroiditis, nor does it alter the requirement for both in vivo priming and in vitro activation of spleen cells for the development of EAT. Spleen cells from EAT-resistant strains of mice (e.g., Balb/c) do not induce EAT in irradiated recipients. Irradiated recipients develop significant levels of anti-MTg antibodies while unirradiated recipients have little detectable antibody response. The augmenting effect of irradiation can be substantially reversed by transferring naive spleen cells to recipients prior to the transfer of MTg/LPS-primed in vitro-activated spleen cells. In addition athymic CBA/Tufts nude mice develop more severe EAT than CBA/Tufts nude/+ littermates following transfer of activated CBA/J spleen cells. These data suggest that natural suppressor cells may regulate the development of EAT at the effector cell level.  相似文献   

2.
Susceptibility to experimental autoimmune thyroiditis (EAT) in the mouse is linked to the I-A subregion of the major histocompatibility complex. EAT can be induced in susceptible strains of mice by immunization with mouse thyroglobulin (MTg) and adjuvant. We have described a cell transfer system wherein spleen cells from EAT-susceptible CBA/J mice primed in vivo with MTg and lipopolysaccharide (LPS) can be activated in vitro with MTg to transfer EAT to naive syngeneic recipients. This cell transfer system was used to elucidate the cellular basis for the I-A restriction in EAT. While the cell active in transferring EAT was Thy 1+ I-A-, depletion of I-A+ cells from the in vitro culture prevented the activation of EAT effector T cells. MTg-pulsed mitomycin C-treated naive syngeneic spleen cells as antigen-presenting cells (APCs) could replace the I-A+ cells in vitro. Allogeneic (Balb/c) APCs were ineffective. Using APCs from several recombinant inbred strains of mice, it was shown that C3H/HEN and B10.A(4R) APCs were effective in activating MTg/LPS-primed CBA/J spleen cells to transfer EAT while B10.A(5R) APCs were ineffective. This maps the H-2 restriction to the K or I-A subregions. Addition of polyclonal anti-Iak or monoclonal anti-I-Ak or anti-L3T4 during in vitro activation inhibited both the generation of EAT effector cells and the proliferative response to MTg. Irrelevant anti-Ia reagents, monoclonal anti-I-Ek, and monoclonal anti-I-Jk were ineffective. Thus the I-A restriction in murine EAT appears to result from an I-A restricted interaction between Ia+ APCs and Ia- EAT effector T cells.  相似文献   

3.
Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.  相似文献   

4.
Spleen cells from CBA/J or SJL mice sensitized with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) could be activated in vitro with MTg to transfer experimental autoimmune thyroiditis (EAT) to normal syngeneic recipients. EAT induced by these transferred cells was similar in incidence and severity to EAT induced by active immunization of mice with MTg and adjuvant and cells from EAT-resistant Balb/c mice could not be activated to induce EAT. The specific antigen MTg was required both for initial sensitization of the mice and for activation of spleen cells in vitro. The cells that were active in transferring EAT to mice were shown to be T cells. Removal of B cells from the cultured spleen cells had no effect on the ability of the cells to induce EAT.  相似文献   

5.
Experimental autoimmune thyroiditis (EAT) can be induced in mice after the transfer of mouse thyroglobulin (MTg)-sensitized donor spleen cells that have been activated in vitro with MTg. CD4+ T cells are required for the transfer of EAT in this model. Because CD4+ T cells produce various lymphokines, such as IFN-gamma, that may be involved in the activation or regulation of the immune response to MTg and the development of EAT, the present study was undertaken to determine whether a neutralizing mAb to IFN-gamma could modulate the induction or expression of EAT. The anti-IFN-gamma mAb XMG-1.2 had no effect on sensitization of donor cells. However, addition of XMG-1.2 mAb during in vitro activation of MTg-primed spleen cells resulted in more severe EAT in recipient mice. The thyroid lesions in recipients of cells cultured with MTg and XMG-1.2 mAb also exhibited granulomatous changes, which differed qualitatively from the predominantly lymphocytic cell infiltrates in recipients of cells cultured with MTg alone. Recipients of MTg-activated spleen cells also developed severe granulomatous EAT when they were given injections of XMG-1.2 mAb. The effects of XMG-1.2 could be neutralized by IFN-gamma. Recipients of cells cultured in the presence of XMG-1.2 mAb had augmented autoantibody responses, although there were no apparent differences in the IgG subclass distribution of the anti-MTg autoantibody responses. These studies suggest that neutralization of endogenous IFN-gamma results in increased activity of cells capable of inducing granulomatous EAT in mice.  相似文献   

6.
In the present study, two adjuvants, SGP and Quil A, were assessed for their ability to induce experimental autoimmune thyroiditis (EAT) in mice. SGP (a synthetic copolymer of starch, acrylamide, and sodium acrylate) and Quil A (a plant saponin) were compared with lipopolysaccharide (LPS) and complete Freund's adjuvant (CFA) given together with mouse thyroglobulin (MTg) for their ability to induce EAT in CBA/J mice. Immunization with MTg and LPS, MTg and CFA, or MTg with SGP was effective in inducing anti-MTg antibodies and histologic EAT, while MTg with Quil A was ineffective in inducing either anti-MTg antibodies or EAT. MTg with LPS was able to prime mice for the development of an in vitro spleen cell proliferative response to MTg while MTg with SGP or with Quil A was unable to prime spleen cells to proliferate detectably in response to MTg. MTg with LPS given in vivo primes CBA/J spleen cells for further activation by in vitro culture with MTg to transfer EAT to naive CBA/J recipients. MTg with SGP was also effective in priming CBA/J spleen cells for in vitro activation and transfer of EAT while MTg with Quil A was ineffective. The effective adjuvant activity of SGP and its lack of toxicity relative to LPS should make it a useful agent for further studies in murine models of EAT.  相似文献   

7.
Experimental autoimmune thyroiditis (EAT) can be induced in susceptible strains of mice by injection of mouse thyroglobulin (MTg) and adjuvant. Lymphocytes from immunized mice develop a proliferative response to MTg which generally correlates with the development of EAT. We utilize a cell transfer system wherein spleen cells from CBA/J mice primed with MTg and lipopolysaccharide (LPS) in vivo are activated by culture with MTg in vitro to transfer EAT to naive recipients. In vivo priming of CBA/J mice is required to develop an antigen specific proliferative response to MTg. This response is optimal between 48 and 90 hr of culture at an MTg concentration of 125-250 micrograms/ml. The correlation between proliferation and transfer of EAT is not absolute as primed Balb/c X CBA/J F1 and AKR lymphocytes do not proliferate detectably in response to MTg but can be activated to transfer EAT; primed Balb/c lymphocytes neither proliferate nor transfer EAT. Proliferation per se is not sufficient to activate cells to transfer EAT as culture with nonspecific mitogens is not effective in activating primed CBA/J spleen cells to transfer EAT. However, lymphoblasts generated during in vitro culture of primed CBA/J spleen cells with MTg are responsible for transfer of EAT; small lymphocytes are ineffective. We conclude that antigen specific proliferation in response to MTg is essential in activating lymphocytes in vitro to transfer EAT.  相似文献   

8.
Granulomatous experimental autoimmune thyroiditis (G-EAT) is induced by mouse thyroglobulin-sensitized spleen cells activated in vitro with mouse thyroglobulin, anti-IL-2R, and IL-12. G-EAT lesions reach maximal severity 19-21 days after cell transfer, and lesions almost completely resolve by day 35. Depletion of CD8+ cells delays resolution and reduces Fas ligand (FasL) mRNA expression in thyroids. This study was undertaken to analyze Fas and FasL protein expression in the thyroid during induction and resolution of G-EAT and to determine whether CD8+ cells might regulate Fas or FasL expression in the thyroid. Fas and FasL expression was analyzed by immunohistochemical staining or in situ hybridization in thyroids of mice with or without depletion of CD8+ cells. Fas and FasL proteins were not detectable in normal thyroids, but expression of both proteins increased during development of G-EAT. Fas was expressed primarily by inflammatory cells; some enlarged thyrocytes were also Fas+. Thyrocytes had intense FasL immunoreactvity, and many CD8+ cells were also FasL positive. Depletion of CD8+ cells resulted in decreased FasL expression by thyrocytes and inflammatory cells, but had no effect on Fas expression. TUNEL assay detected many apoptotic inflammatory cells in proximity to thyrocytes. CD8-depleted thyroids had ongoing inflammation with fewer apoptotic infiltrating cells at day 35. Administration of a neutralizing anti-FasL mAb had no apparent effects on development of G-EAT, but anti-FasL was as effective as anti-CD8 in preventing G-EAT resolution. These results suggested that CD8+ T cells and thyrocytes may kill inflammatory cells through the Fas pathway, contributing to G-EAT resolution.  相似文献   

9.
When granulomatous experimental autoimmune thyroiditis (G-EAT) was induced in CBA/J or DBA/1 mice, thyroid lesions resolved in less severe (3+) G-EAT in wild-type mice or severe (5+) G-EAT in IFN-gamma(-/-) mice, but progressed to fibrosis in 5+ G-EAT in wild-type mice. To define the mechanisms leading to these distinct outcomes, the expression of inflammatory and apoptotic molecules and infiltrating cells was evaluated using immunohistochemistry, RT-PCR, and confocal microscopy. The ratio of CD4(+)/CD8(+) T cells in thyroid infiltrates was one factor that predicted G-EAT outcome. CD4(+) T cells outnumbered CD8(+) T cells when lesions progressed to fibrosis, while CD8(+) T cells outnumbered CD4(+) T cells in thyroids that resolved. Fas, Fas ligand, FLIP, TNF-alpha, inducible NO synthase, TGF-beta, and IFN-gamma were highly expressed by infiltrating cells when G-EAT progressed to fibrosis. The expression of active caspase-3 was low, possibly contributing to the persistence of CD4(+) T cells in fibrosis. In contrast, FLIP was mainly expressed by thyrocytes in resolving G-EAT, the expression of active caspase-3 was high, and resolution correlated with apoptosis of infiltrating cells. There was also relatively less expression of TGF-beta, IFN-gamma, TNF-alpha, and inducible NO synthase and higher expression of IL-10 in resolving G-EAT than in G-EAT that progressed to fibrosis. These differences were particularly striking when comparing IFN-gamma(-/-) vs wild-type mice. These results suggest that several opposing biological mechanisms contribute to the outcome of an ongoing autoimmune response. These include differential expression of pro- and antiapoptotic molecules, cytokines, and the ratio of CD4(+) vs CD8(+) T cells.  相似文献   

10.
We previously suggested that CD8(+) T cells promoted resolution of granulomatous experimental autoimmune thyroiditis (G-EAT) at least in part through regulation of Fas ligand (FasL) expression on thyroid epithelial cells. To directly evaluate the role of the Fas pathway in G-EAT resolution, Fas- and FasL-deficient mice on the NOD.H-2h4 background were used as recipients of activated G-EAT effector cells. When MTg-primed wild-type (WT) donor splenocytes were activated and transferred to WT recipients, thyroid lesions reached maximal severity on day 20 and resolved on day 50. Fas, FasL, and FLIP were up-regulated, and many apoptotic inflammatory cells were detected in recipient thyroids on day 20. Fas was predominantly expressed by inflammatory cells, and FasL and FLIP were mainly expressed by thyroid epithelial cells. After depletion of CD8(+) T cells, G-EAT resolution was delayed, FLIP and FasL were predominantly expressed by inflammatory cells, and few inflammatory cells were apoptotic. When WT donor splenocytes were transferred to gld recipients, disease severity on day 20 was similar to that in WT recipients, but resolution was delayed. As in CD8-depleted WT recipients, there were few apoptotic inflammatory cells, and FLIP and FasL were expressed primarily by inflammatory cells. These results indicated that the expression of functional FasL in recipient mice was critical for G-EAT resolution. WT cells induced minimal disease in lpr recipients. This was presumably because donor cells were eliminated by the increased FasL on lpr recipient cells, because donor cells were not eliminated, and the mice developed G-EAT if lpr recipients were given anti-FasL mAb.  相似文献   

11.
Previous studies have shown that T cells from mice genetically susceptible to experimental autoimmune thyroiditis (EAT) recognize determinants shared between mouse thyroglobulin (Tg) and heterologous Tgs. Some shared determinants are thyroiditogenic; lymphocytes from mice immunized with mouse Tg (MTg) or human Tg (HTg) and reciprocally restimulated in vitro with either Tg can transfer EAT. Studies on the mechanisms of self-tolerance have shown that pretreatment with soluble MTg suppresses in vitro proliferation to MTg and EAT induction with MTg. To determine the role of share epitopes in maintaining tolerance, mice were pretreated with soluble HTg and immunized with HTg or MTg and adjuvant. Cells from HTg-pretreated. HTg-immunized mice showed suppressed in vitro proliferative response to HTg. Following MTg immunization, the cells showed suppressed in vitro response to MTg. However, in contrast to MTg pretreatment, the subsequent development of EAT in vivo was unaltered in severity following HTg pretreatment. Thus, determinants shared between HTg and MTg can induce suppression of in vitro responses to HTg and MTg, but not inhibit the onset of thyroiditis, suggesting that T cells recognizing MTg-unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique and shared epitopes on MTg are essential for the overall maintenance of self-tolerance.  相似文献   

12.
Deaggregated mouse thyroglobulin (dMTg) induces tolerance to experimental autoimmune thyroiditis (EAT), a Th1-cell-mediated disease. To test whether IL-12, a potent activator of Th1 cells, can overcome tolerance induction, different doses of IL-12 were given to CBA/J mice during the critical interval of 2--3 days after dMTg administration. After challenge with MTg/LPS, dMTg/IL-12-pretreated mice showed more extensive thyroiditis than immunized controls, but comparable levels of anti-MTg and T cell proliferation. Without challenge, few MTg antibodies were produced. In contrast, pretreatment with dMTg/poly A:U or dMTg/IL-1, two other T cell activators which also interfere with tolerance induction, induced antibodies before challenge, but not more severe thyroiditis. Mice pretreated with IL-12 without dMTg developed thyroiditis comparable to immunized controls, but less severe thyroiditis than dMTg/IL-12-pretreated mice. Clearly, IL-12 not only blocked tolerance induction, but also primed antigen-specific T cells during the tolerogenic period of dMTg pretreatment, resulting in stronger thyroiditis than immunization only. Neither treatment with anti-IFN-gamma nor the use of IFN-gamma knockout mice altered the capacity of IL-12 to prevent tolerance induction. However, both anti-CD28 and anti-CD40L antibodies diminished the priming effect by dMTg/IL-12. The mechanisms of IL-12 action include priming of MTg-specific T cells and the involvement of T cell costimulatory molecules.  相似文献   

13.
Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.  相似文献   

14.
In this study, a murine model of granulomatous experimental autoimmune thyroiditis (G-EAT) was used to determine the role of TGFbeta1 in fibrosis initiated by an autoimmune inflammatory response. The fibrotic process was evaluated by staining thyroid tissue for collagen, alpha-smooth muscle actin, TGFbeta1, and angiotensin-converting enzyme (ACE), and measuring serum thyroxine in mice given anti-TGFbeta1 or the ACE inhibitor lisinopril. The role of particular inflammatory cells in fibrosis was tested by depletion experiments, and the cytokine profile in thyroids was examined by RT-PCR. Neutralization of TGFbeta1 by anti-TGFbeta1 or lisinopril resulted in less collagen deposition and less accumulation of myofibroblasts, and levels of active TGFbeta1 and ACE were reduced in thyroids of treated mice compared with those of untreated controls. Other profibrotic molecules, such as platelet-derived growth factor, monocyte chemotactic protein-1, and IL-13, were also reduced in thyroids of anti-TGFbeta1- and lisinopril-treated mice compared with those of controls. Confocal microscopy showed that CD4(+) T cells and macrophages expressed TGFbeta1. Fibrosis was reduced by injection of anti-CD4 mAb on day 12, when G-EAT was very severe (4-5+). Together, these results suggest a critical role for TGFbeta1 in fibrosis initiated by autoimmune-induced inflammation. Autoreactive CD4(+) T cells may contribute to thyroid fibrosis through production of TGFbeta1. This G-EAT model provides a new model to study how fibrosis associated with autoimmune damage can be inhibited.  相似文献   

15.
T cells from genetically susceptible mice developing experimental autoimmune thyroiditis (EAT) proliferate in response to restimulation with mouse thyroglobulin (MTg) in vitro. The in vitro-activated cells adoptively transfer EAT as well as differentiate into cells cytotoxic for syngeneic thyroid monolayers. To examine the kinetics of T cell subset infiltration and distribution in situ after adoptive transfer, we applied the avidin-biotin-peroxidase labeling technique to thyroid sections, utilizing rat monoclonal antibodies followed by a biotinylated rabbit anti-rat antibody. Female CBA donor mice were immunized with MTg and lipopolysaccharide. Their spleen cells were obtained 7 days later, cultured with MTg, and transferred into recipient mice. The thyroids were removed on Days 7, 10, and 14 after transfer and serially sectioned. The early phase of transferred EAT showed a higher percentage of L3T4+ cells compared to Lyt-2+ cells, yielding a ratio of 2.3 and total T cells of about 35%. By Day 10, both T cell subsets had increased to a total of about 56%. However, the relative increase was greater in the Lyt-2+ subset; the nearly doubled percentage was statistically significant, resulting in a downward shift in the subset ratio to 1.7. Little change in the in situ distribution was seen on Day 14. The percentages of F4/80+ (macrophage) population in lesions examined on Days 10 and 14 were fairly constant and B cell involvement was minimal. These findings illustrate the pathogenic role of both T cell subsets in adoptively transferred EAT and the time-dependent changes in their relative proportions leading to thyroid gland destruction.  相似文献   

16.
Previous studies have shown that genetically susceptible mice can be rendered resistant to the induction of experimental autoimmune thyroiditis (EAT) by pretreatment with deaggregated mouse thyroglobulin (dMTg). This resistance is mediated by CD4+ suppressor T cells (Ts) which suppress the afferent/inductive phase of EAT. Recent work has also shown that resistance to EAT can be achieved by vaccination with irradiated spleen cells previously primed in vivo with MTg and cultured in vitro with MTg (gamma SC). The gamma SC-induced resistance also inhibits the afferent phase of EAT but is mediated by both CD4+ and CD8+ Ts. To determine if dMTg- and gamma SC-induced suppression can cooperate to prevent EAT, we pretreated mice with suboptimal doses of dMTg and gamma SC before challenge with MTg and adjuvant. Mice receiving dMTg or gamma SC only showed suppressed in vitro response to MTg, but the development of thyroid lesions was unaltered. However, mice given one or two subtolerogenic doses of dMTg followed by gamma SC not only showed suppressed in vitro response to MTg, but also little or no thyroiditis, indicating cooperation between these two mechanisms. The cooperation was not reciprocal since reversing the order, giving gamma SC first followed by dMTg, was not effective in suppressing EAT. Thus, suppressor mechanisms activated by pretreatment with dMTg and gamma SC can act synergistically to suppress EAT induction; the two mechanisms may cooperate in vivo to maintain self-tolerance provided that MTg-specific CD4+ Ts are initially activated.  相似文献   

17.
The effect of age on the ability to elicit the various immune functions comprising experimental autoimmune thyroiditis in mice has been examined. Compared with young mice (2 to 3 mo), CBA/CaJ and A/J aged mice (20 to 30 mo) show a drastic reduction in their ability to develop circulating antibody after injection of mouse thyroglobulin (MTg) or mouse thyroid extract (MTE) in complete Freund's adjuvant (CFA). Delayed-type hypersensitivity responses were also depressed, as well as the ability of aged lymph node cells to proliferate in vitro to antigen and the ability of aged splenic T cells to function as helper cells for in vitro antibody production. However, after injection of these thyroid antigens in CFA, aged mice developed thyroid lesions either comparable to or only slightly less intense than those observed in young mice. The disparity between the levels of immune responses and thyroid lesions observed in aged mice can be explained by the greater susceptibility of aged thyroids to tissue damage, since transfer of identical numbers of Con A-activated MTE-primed young splenocytes to young and aged recipients results in a more severe thyroiditis in the aged recipients. Priming mice to MTE in CFA at 9 mo of age, at which time mice are responsive to MTE, did not enhance either T or B cell responsiveness to injection of MTE in CFA at 24 mo of age. Lymphocytes from MTE-injected aged mice also failed to transfer thyroiditis to young recipients after in vitro activation of the lymphocytes with Con A.  相似文献   

18.
IFN-gamma promotes the development of lymphocytic spontaneous autoimmune thyroiditis (L-SAT) in NOD.H-2h4 mice and inhibits the development of thyrocyte hyperplasia and proliferation (TEC H/P). The precise mechanisms by which IFN-gamma promotes L-SAT and inhibits TEC H/P are unknown. To determine whether responsiveness of lymphocytes or thyrocytes to IFN-gamma is important for the development of these lesions, IFN-gammaR-/- mice, which develop TEC H/P similar to IFN-gamma-/- mice, were used as recipients for adoptive cell transfer. Wild-type (WT) splenocytes or bone marrow induced L-SAT and inhibited TEC H/P in IFN-gamma-/-, but not IFN-gammaR-/- recipients. IFN-gammaR-/- recipients of WT cells developed severe TEC H/P, but did not develop L-SAT, suggesting that thyrocytes responding to IFN-gamma are important for inhibition of TEC H/P. Unexpectedly, IFN-gammaR-/- splenocytes or bone marrow did not induce L-SAT in IFN-gamma-/- or WT mice even though IFN-gammaR-/- lymphocyte donors produced as much IFN-gamma as lymphocytes from WT donors, and thyrocytes could respond to IFN-gamma. Real-time PCR indicated that recipients of IFN-gammaR-/- bone marrow expressed less mRNA for IFN-gamma-inducible chemokines compared with recipients of WT bone marrow. This might limit the migration of IFN-gammaR-/- lymphocytes to thyroids. Few IFN-gammaR-/- lymphocytes infiltrated thyroids even in the presence of WT lymphocytes, suggesting that lymphocytes unable to respond to IFN-gamma are not induced to migrate to thyroids. These results suggest that thyrocytes must be able to respond to IFN-gamma for the development of L-SAT and inhibition of TEC H/P, and lymphocytes must be able to respond to IFN-gamma to induce L-SAT.  相似文献   

19.
Guinea pigs injected with guinea pig thyroglobulin (GPTG) in incomplete Freund's adjuvant (IFA) have been shown to be unresponsive to challenge with GPTG in complete Freund's adjuvant (CFA). However, effector cells which transfer experimental autoimmune thyroiditis (EAT) can be demonstrated in cultured lymph node cells (LNC) of unresponsive animals, indicating that GPTG in IFA does not suppress the initial sensitization of EAT effector cells. LNC from unresponsive animals were unable to suppress the in vitro activation of effector LNC or to suppress EAT when cotransferred with effector cells. When GPTG in IFA was given to animals which were used as recipients of effector cells, the production of EAT was markedly suppressed. These results suggest that GPTG in IFA can suppress EAT either by preventing effector cells from interacting with the thyroid or by interfering with the function of a cell in the normal recipient which may interact with effector cells to result in the lesions of EAT.  相似文献   

20.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号