首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The universal stress proteins (USPs) play an important role in enhancing survival rate during prolonged exposure to heat shock, nutrient starvation, or stressors from agents that arrest cell growth or damage DNA structures. Searching the HarvEST database of barley resulted in 25 putative USP cDNA sequences. Of these, 16 could translate into intact proteins (putative USPs). The alignments of multiple amino acid sequences between the putative barley USPs with those of Arabidopsis and Methanococcus jannaschii resulted in a set of common residues involved in ATP-binding. The 16 putative USPs in barley and the 21 in Arabidopsis were clustered into seven groups, which were distinct from those of E. coli. The genes in these different groups have different intron/exon structures. Nine putative USP genes of barley were cloned successfully based on their sequence characteristics, and they contain two or three introns each. Two of these introns were present in all the genes, one located between β2 and α2, and the other between β4 and α4. Five sets of primers were successfully developed for these putative USP genes. Two of them were mapped on chromosome 1H and the other three were located on three different chromosomes, 2H, 3H and 6H, respectively. Expression analyses were carried out for nine of these putative USP genes. The expression for two of them was undetectable within 27 h following exposure to salt stress. Six of the other seven were expressed in both root and leaf, and the remaining one was expressed in root only. The majority of these genes was expressed more in the salt-sensitive variety, Morex, than in the more tolerant variety, Steptoe.  相似文献   

2.
A breeding objective for the malting barley industry is to produce lines with softer, plumper grain containing moderate protein content (9–12%) as they are more likely to imbibe water readily and contain more starch per grain, which in turn produces higher levels of malt extract. In a malting barley mapping population, ‘Arapiles’ × ‘Franklin’, the most significant and robust quantitative trait locus (QTL) for endosperm hardness was observed on the short arm of chromosome 1H, across three environments over two growing seasons. This accounted for 22.6% (Horsham 2000), 26.8% (Esperance 2001), and 12.0% (Tarranyurk 2001) of the genetic variance and significantly increased endosperm hardness by 2.06–3.03 SKCS hardness units. Interestingly, Arapiles and Franklin do not vary in Ha locus alleles. Therefore, this region, near the centromere on chromosome 1H, may be of great importance when aiming to manipulate endosperm hardness and malting quality. Interestingly, this region, close to the centromere on chromosome 1H, in our study, aligns with the region of the genome that includes the HvCslF9 and the HvGlb1 genes. Potentially, one or both of these genes could be considered to be candidate genes that influence endosperm hardness in the barley grain. Additional QTLs for endosperm hardness were detected on chromosomes 2H, 3H, 6H and 7H, confirming that the hardness trait in barley is complex and multigenic, similar to many malting quality traits of interest.  相似文献   

3.
We report here the molecular and cytological characterization of two proteins, ScoHET1 and ScoHET2 (for Sciara coprophila heterochromatin), which associate to constitutive heterochromatin in the dipteran S. coprophila. Both proteins, ScoHET1 of 37 kDa and ScoHET2 of 44 kDa, display two chromodomain motifs that contain the conserved residues essential for the recognition of methylated histone H3 at lysine 9. We raised antibodies to analyze the chromosomal location of ScoHET1 and ScoHET2 in somatic and germline cells. In S. coprophila polytene chromosomes, both proteins associate to the pericentromeric regions and to the heterochromatic subterminal bands of the chromosomes. In germinal nuclei, ScoHET1 and ScoHET2 proteins distribute to the heterochromatic regions of the regular chromosome complement and are abundantly present along the heterochromatic germline-limited “L” chromosomes. We investigated histone methylation modifications and found that all heterochromatic regions enriched in ScoHET1/ScoHET2 proteins exhibit high levels of di- and tri-methylated histone H3 at lysine 9. Taken together, our results support that the association of ScoHET1/ScoHET2 to heterochromatin is mediated by histone H3K9 methylation. Using 5-methylcytosine antibodies, we proved the cytological detection of DNA methylation in S. coprophila. From our observations in L germline chromosomes, heterochromatin in S. coprophila is highly enriched in DNA 5-methylcytosine residues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The distribution of DNA complexes with proteins resistant to routine deproteinisation procedures (tightly bound proteins, TBP) was studied on the barley chromosome 1H by means of microsatellite analysis. The polypeptide spectrum of the barley shoot TBP was similar to that formerly described for other organisms. In order to reveal developmental changes in the distribution of the TBP, DNA was extracted from dry grains, coleoptiles, root tips, and young and old leaves. In the seeds, all the studied DNA sites were evenly distributed between free DNA and DNA containing the tight DNA-protein complexes. Germination made the interaction between TBP and chromosomal loci specific. In coleoptile DNA, sites containing microsatellites located in the distal part of the long arm of the chromosome were not bound to the TBP anymore, however, the centromeric markers were found exclusively in the tight DNA-protein complexes. A similar but not identical distribution of markers was observed in the root tips and young leaves. Leaf senescence was accompanied by a loss in interaction specificity between chromosomal loci and tightly bound proteins. These results are considered to reflect changes in chromatin domain interaction with the nuclear matrix during plant development.  相似文献   

5.
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high‐quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high‐confidence protein‐coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single‐copy plant genes, illustrating that the gene‐containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1‐specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.  相似文献   

6.
It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of α-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of α-amylase activity reveal that GA-induced α-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing α-amylase secretion or inhibiting α-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI α-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of α-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination. Zhen Xie and Zhong-Lin Zhang contributed equally to this work.  相似文献   

7.
 The most common class of plant disease resistance (R) genes cloned so far belong to the NBS-LRR group which contain nucleotide-binding sites (NBS) and a leucine-rich repeat (LRR). Specific primer sequences derived from a previously isolated NBS-LRR sequence at the Cre3 locus, which confers resistance to cereal cyst nematode (CCN) in wheat (Triticum aestivum L.) were used in isolating a family of resistance gene analogs (RGA) through a polymerase chain reaction (PCR) cloning approach. The cloning, analysis and genetic mapping of a family of RGAs from wheat (cv ‘Chinese Spring’) and barley (Hordeum vulgare L. cvs ‘Chebec’ and ‘Harrington’) are presented. The wheat and barley RGAs contain other conserved motifs present in known R genes from other plants and share between 55–99% amino acid sequence identity to the NBS-LRR sequence at the Cre3 locus. Phylogenetic analysis of the RGAs with other cloned R genes and RGAs from various plant species indicate that they belong to a superfamily of NBS-containing genes. Two of the barley derived RGAs were mapped onto loci on chromosomes 2H (2), 5H (7) and 7H (1) using barley doubled haploid (DH) mapping populations. Some of these loci identified are associated with regions carrying resistance to CCN and corn leaf aphid. Received: 6 January 1998 / Accepted: 1 April 1998  相似文献   

8.
A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs.  相似文献   

9.
Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in organically grown as well as in conventionally grown Nordic and Mediterranean barley districts. Two barley segregating populations represented by 103 recombinant inbred lines (RILs) of the cross L94 (susceptible) × Vada (resistant) and 194 RILs of the cross Arta (susceptible) × Hordeum spontaneum 41-1 (resistant) were analysed with two highly virulent leaf stripe isolates, Dg2 and Dg5, to identify loci for P. graminea resistance. A major gene with its positive allele contributed by Vada and H. spontaneum 41-1 was detected in both populations and for both pathogen isolates on chromosome 2HL explaining 44.1 and 91.8% R 2, respectively for Dg2 and Dg5 in L94 × Vada and 97.8 and 96.1% R 2, respectively for Dg2 and Dg5 in Arta × H. spontaneum 41-1. Common markers in the gene region of the two populations enabled map comparison and highlighted an overlapping for the region of the resistance locus. Since the map position of the resistance locus identified in this report is the same as that for the leaf stripe resistance gene Rdg1a, mapped earlier in Alf and derived from the ‘botanical’ barley line H. laevigatum, we propose that leaf stripe resistance in Vada and H. spontaneum 41-1 is governed by the same gene, namely by Rdg1a, and that Rdg1a resistance could be traced back to H. spontaneum, the progenitor of cultivated barley. PCR-based molecular markers that can be used for marker-assisted selection (MAS) of Rdg1a were identified. An Rdg1a syntenic interval with the rice chromosome arm 4L was identified on the basis of rice orthologs of EST-based barley markers. Analysis of the rice genes annotated into the syntenic interval did not reveal sequences strictly belonging to the major class (nucleotide-binding site plus leucine-rich repeat) of the resistance genes. Nonetheless, four genes coding for domains that are present in the major disease-resistance genes, namely receptor-like protein kinase and ATP/GTP-binding proteins, were identified together with a homolog of the barley powdery mildew resistance gene mlo. Three (out of five) homologs of these genes were mapped in the Rdg1a region in barley and the mlo homolog map position was tightly associated with the LOD score peak in both populations.  相似文献   

10.
11.
The Russsian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a worldwide pest of cereals. Despite its economic importance, little is known about its genome. Here we investigated physical genomic features in RWA by karyotype analysis using differential staining with AgNO3, CMA3, and DAPI, by chromosomal localization of ribosomal DNA (rDNA), H3 and H4 histone genes, and the “arthropod” telomeric sequence (TTAGG) n using fluorescence in situ hybridization (FISH), and by measuring the RWA genome size using flow cytometry. The female karyotype, 2n = 10, is composed of four autosome pairs and a pair of X chromosomes, whereas the male karyotype, 2n = 9, has a single X. The X chromosome is the largest element in the karyotype. All three molecular markers used, i.e., 18S rRNA and both H3 and H4 probes are co-localized at one end of the X chromosome. The FISH probes revealed that the AgNO3-positive bridge between two prometaphase X chromosomes of females, which is believed to be responsible for the elimination of one X chromosome in aphid oocytes determined to undergo male development, contains clusters of both histone genes, in addition to an rDNA cluster. Interestingly, RWA lacks the (TTAGG) n telomeric sequence in its genome, in contrast to several previously investigated aphid species. Additionally, we compared female and male genome sizes. The female genome size is 2C = 0.86 pg, whereas the male genome size is 2C = 0.70 pg. The difference between the DNA content in the two genders suggests that the RWA X chromosome occupies about 35% of the female haploid genome (1C = 0.43 pg), which makes it one of the largest sex chromosomes in the animal kingdom.  相似文献   

12.
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C ∼ 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat–barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H–7H. Thus, the barley genome can be dissected into fractions representing only about 6–12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.  相似文献   

13.
14.
The RNA polymerase III factor TFIIIB forms a stable complex with DNA and can promote multiple rounds of initiation by polymerase. TFIIIB is composed of three subunits, the TATA binding protein (TBP), TFIIB-related factor (BRF), and B". Chemical footprinting, as well as mutagenesis of TBP, BRF, and promoter DNA, was used to probe the architecture of TFIIIB subunits bound to DNA. BRF bound to TBP-DNA through the nonconserved C-terminal region and required 15 bp downstream of the TATA box and as little as 1 bp upstream of the TATA box for stable complex formation. In contrast, formation of complete TFIIIB complexes required 15 bp both upstream and downstream of the TATA box. Hydroxyl radical footprinting of TFIIIB complexes and modeling the results to the TBP-DNA structure suggest that BRF and B" surround TBP on both faces of the TBP-DNA complex and provide an explanation for the exceptional stability of this complex. Competition for binding to TBP by BRF and either TFIIB or TFIIA suggests that BRF binds on the opposite face of the TBP-DNA complex from TFIIB and that the binding sites for TFIIA and BRF overlap. The positions of TBP mutations which are defective in binding BRF suggest that BRF binds to the top and N-terminal leg of TBP. One mutation on the N-terminal leg of TBP specifically affects the binding of the B" subunit.  相似文献   

15.
Efficient production of recombinant barley α-amylase has been achieved in Aspergillus niger. The cDNA encoding α-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for α-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44 960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley α-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol β-d-maltoheptaoside and amylose (degree of polymerisation = 17). Barley α-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. Received: 22 August 1997 / Received revision: 21 November 1997 / Accepted: 29 November 1997  相似文献   

16.
To develop a strain of Saccharomyces cerevisiae that produces ethanol directly from starch, two integrative vectors were constructed to allow the simultaneous multiple integration of the Aspergillus awamori glucoamylase gene (GA1) and the Debaryomyces occidentalis α-amylase gene (AMY) and glucoamylase with debranching activity gene (GAM1) into the chromosomes of an industrial strain of S. cerevisiae. The GA1 and AMY genes were constitutively expressed under the ADC1 promoter in S. cerevisiae using the double δ-integration system. The GAM1 gene was constitutively expressed under the corresponding promoter using the double 18S rDNA-integration system. The recombinant industrial strain secreting biologically active α-amylase, glucoamylase and debranching enzyme was able to ferment starch to ethanol in a single step. The new strain produced 8% (v/v) ethanol (62.8 g l−1) from 20% (w/v) soluble starch after 2 days, fermentation.  相似文献   

17.

Background  

Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group) protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare), an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins.  相似文献   

18.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   

19.
The hypersensitive response (HR) is one of the most-efficient forms of plant defense against biotrophic pathogens, and results in localized cell death and the formation of necrotic lesions; however, the molecular components of pathways leading to HR remain largely unknown. Barley (Hordeum vulgare ssp. vulgare L.) cDNAs for putative hypersensitive-induced reaction (HIR) genes were isolated based on DNA and amino-acid homologies to maize HIR genes. Analyses of the cDNA and genomic sequences and genetic mapping found four distinct barley HIR genes, Hv-hir1, Hv-hir2, Hv-hir3 and Hv-hir4, on chromosomes 4(4H) bin10, 7(5H) bin04, 7(5H) bin07 and 1(7H) bin03, respectively. Hv-hir1, Hv-hir2 and Hv-hir3 genes were highly homologous at both DNA and the deduced amino-acid level, but the Hv-hir4 gene was similar to the other genes only at the amino-acid sequence level. Amino-acid sequence analyses of the barley HIR proteins indicated the presence of the SPFH protein-domain characteristic for the prohibitins and stomatins which are involved in control of the cell cycle and ion channels, as well as in other membrane-associated proteins from bacteria, plants and animals. HIR genes were expressed in all organs and developement stages analyzed, indicating a vital and non-redundant function. Barley fast-neutron mutants exhibiting spontaneous HR (disease lesion mimic mutants) showed up to a 35-fold increase in Hv-hir3 expression, implicating HIR genes in the induction of HR.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Wenzel  相似文献   

20.
B chromosomes are additional chromosomes widely studied in a diversity of eukaryotic groups, including fungi, plants and animals, but their origin, evolution and possible functions are not clearly understood. To further understand the genomic content and the evolutionary history of B chromosomes, classical and molecular cytogenetic analyses were conducted in the cichlid fish Astatotilapia latifasciata, which harbor 1–2 B chromosomes. Through cytogenetic mapping of several probes, including transposable elements, rRNA genes, a repeated DNA genomic fraction (C 0 t − 1 DNA), whole genome probes (comparative genomic hybridization), and BAC clones from Oreochromis niloticus, we found similarities between the B chromosome and the 1st chromosome pair and chromosomes harboring rRNA genes. Based on the cytogenetic mapping data, we suggest the B chromosome may have evolved from a small chromosomal fragment followed by the invasion of the proto-B chromosome by several repeated DNA families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号