首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1 is present in the endosperm between 7 and 21 d after pollination, a period that encompasses the onset of endoreduplication, while the Zeama;KRP;2 protein declines during this time. Nevertheless, Zeama;KRP;1 accounts for only part of the CDK inhibitory activity that peaks coincident with the endoreduplication phase of endosperm development. In vitro assays showed that Zeama;KRP;1 and Zeama;KRP;2 are able to inhibit endosperm Cdc2-related CKD activity that associates with p13(Suc1). They were also shown to specifically inhibit cyclin A1;3- and cyclin D5;1-associated CDK activities, but not cyclin B1;3/CDK. Overexpression of Zeama;KRP;1 in maize embryonic calli that ectopically expressed the wheat dwarf virus RepA protein, which counteracts retinoblastoma-related protein function, led to an additional round of DNA replication without nuclear division.  相似文献   

3.
High mobility group proteins HMG-I(Y) and HMG-1, as well as histone H1, all share the common property of binding to four-way junction DNA (4H), a synthetic substrate commonly used to study proteins involved in recognizing and resolving Holliday-type junctions formed during in vivo genetic recombination events. The structure of 4H has also been hypothesized to mimic the DNA crossovers occurring at, or near, the entrance and exit sites on the nucleosome. Furthermore, upon binding to either duplex DNA or chromatin, all three of these nuclear proteins share the ability to significantly alter the structure of bound substrates. In order to further elucidate their substrate binding abilities, electrophoretic mobility shift assays were employed to investigate the relative binding capabilities of HMG-I(Y), HMG-1 and H1 to 4H in vitro. Data indicate a definite hierarchy of binding preference by these proteins for 4H, with HMG-I(Y) having the highest affinity (Kd approximately 6.5 nM) when compared with either H1 (Kd approximately 16 nM) or HMG-1 (Kd approximately 80 nM). Competition/titration assays demonstrated that all three proteins bind most tightly to the same site on 4H. Hydroxyl radical footprinting identified the strongest site for binding of HMG-I(Y), and presumably for the other proteins as well, to be at the center of 4H. Together these in vitro results demonstrate that HMG-I(Y) and H1 are co-dominant over HMG-1 for binding to the central crossover region of 4H and suggest that in vivo both of these proteins may exert a dominant effect over HMG-1 in recognizing and binding to altered DNA structures, such as Holliday junctions, that have conformations similar to 4H.  相似文献   

4.
We have studied the biochemical features, the conformational preferences in solution, and the DNA binding properties of human p8 (hp8), a nucleoprotein whose expression is affected during acute pancreatitis. Biochemical studies show that hp8 has properties of the high mobility group proteins, HMG-I/Y. Structural studies have been carried out by using circular dichroism (near- and far-ultraviolet), Fourier transform infrared, and NMR spectroscopies. All the biophysical probes indicate that hp8 is monomeric (up to 1 mm concentration) and partially unfolded in solution. The protein seems to bind DNA weakly, as shown by electrophoretic gel shift studies. On the other hand, hp8 is a substrate for protein kinase A (PKA). The phosphorylated hp8 (PKAhp8) has a higher content of secondary structure than the nonphosphorylated protein, as concluded by Fourier transform infrared studies. PKAhp8 binds DNA strongly, as shown by the changes in circular dichroism spectra, and gel shift analysis. Thus, although there is not a high sequence homology with HMG-I/Y proteins, hp8 can be considered as a HMG-I/Y-like protein.  相似文献   

5.
6.
7.
8.
Histone H1, HMG-1 and HMG-I(Y) are mammalian nuclear proteins possessing distinctive DNA-binding domain structures that share the common property of preferentially binding to four-way junction (4H) DNA, an in vitro mimic of the in vivo genetic recombination intermediate known as the Holliday junction. Nevertheless, these three proteins bind to 4H DNA in vitro with very different affinities and in a mutually exclusive manner. To investigate the molecular basis for these distinctive binding characteristics, we employed base pair resolution hydroxyl radical footprinting to determine the precise sites of nucleotide interactions of both HMG-1 and histone H1 on 4H DNA and compared these contacts with those previously described for HMG-I(Y) on the same substrate. Each of these proteins had a unique binding pattern on 4H DNA and yet shared certain common nucleotide contacts on the arms of the 4H DNA molecule near the branch point. Both the HMG-I(Y) and HMG-1 proteins made specific contacts across the 4H DNA branch point, as well as interacting at discrete sites on the arms, whereas the globular domain of histone H1 bound exclusively to the arms of the 4H DNA substrate without contacting nucleotides at the crossover region. Experiments employing the chemical cleavage reagent 1, 10-orthophenanthroline copper(II) attached to the C-terminal end of a site-specifically mutagenized HMG-I(Y) protein molecule demonstrated that this protein binds to 4H DNA in a distinctly polar, direction-specific manner. Together these results provide an attractive molecular explanation for the observed mutually exclusive 4H DNA-binding characteristics of these proteins and also allow for critical assessment of proposed models for their interaction with 4H DNA substrates. The results also have important implications concerning the possible in vivo roles of HMG-I(Y), histone H1 and HMG-1 in biological processes such as genetic recombination and retroviral integration.  相似文献   

9.
10.
11.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

12.
13.
Dictyostelium expresses at least two proteins of the cyclin-dependent kinase (Cdk) family, Cdc2 and Crp. Cdc2 levels remain relatively constant during differentiation, whereas the levels of Crp increase dramatically as differentiation progresses. Crp is highly related to the mammalian Cdk5, and p25 (a truncated form of p35, the activating subunit of Cdk5 from mammalian brain) stimulates the histone H1 kinase activity of GST-Crp by several fold. In contrast, p25 does not stimulate the histone H1 kinase activity of GST-Cdc2 or the Cdc2 activity present in cell extracts from vegetative Dictyostelium cells. GST-Cdc2, in vitro translated Cdc2 and Cdc2 from all stages of differentiation bind to p13suc1. In contrast, GST-Crp, in vitro translated Crp and the Crp protein present in cell extracts do not bind to p13suc1. We have confirmed a previous report by Arakane and Maeda [J. Plant Res. (1997) 110, 81-85] that there is a peak of p13suc1 bound histone H1 kinase activity during late development, but we found that there was no corresponding peak of p13suc1 bound Cdc2 protein that corresponds to this activity. Taken together, these data suggest that neither Cdc2 nor Crp is responsible for the late developmental peak of histone H1 kinase activity that binds to p13suc1.  相似文献   

14.
Cell differentiation may depend in part upon a type of unbalanced growth in which several cell cycles occur with a reduced level of total protein synthesis. During this period the synthesis of the chromatin protein HMG-I/Y is reduced since its synthesis is correlated with that of total protein. The synthesis of histone H1 shows less reduction since its synthesis is entrained with that of DNA. This greater reduction of HMG-I/Y than of histone H1 is thought to delay or prevent replicon initiations within AT-enriched isochores. This shifts their time of replication from early to late S phase. This may restrict certain pathways of cell differentiation in multipotent progenitor cells and allow one particular type of differentiation.  相似文献   

15.
16.
17.
In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号