首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Use of diacetyl reductase, a reduced nicotinamide adenine dinucleotide (NADH)-requiring enzyme, to eliminate diacetyl off-flavor in beer was studied. The crude enzyme was extracted from Aerobacter aerogenes and partially purified by ammonium sulfate precipitation or Sephadex chromatography. In the semipure state, the enzyme was inactivated by lyophilization; in a crude state, the lyophilized extract remained stable for at least 4 months at - 20 C. A 50% reduction in specific activity within 5 min was observed when crude diacetyl reductase was suspended (5 mg of protein/ml) in phosphate buffer at pH 5.5 or below; a similar inactivation rate was observed when the crude enzyme was dissolved in a 5% aqueous ethyl alcohol solution. Effective crude enzyme activity in beer at a natural pH of 4.1 required protection of the enzyme in 10% gelatin. Incorporation of yeast cells with the gel-protected enzyme provided regeneration of NADH. Combinations of yeast, enzyme, and gelatin were tested to obtain data analyzed by regression analysis to determine the optimal concentration of each component of the system required to reduce the level of diacetyl in spiked (0.5 ppm) beer to less than 0.12 ppm within 48 hr at 5 C. The protected enzyme system was also effective in removing diacetyl from orange juice (pH 3.8) and some distilled liquors.  相似文献   

2.
Removal of diacetyl from beer with adsorbants like cellulose, silica gel, activated charcoal, calcium phosphate gel, anion- and cation-exchange resins, and silicylic acid black soil bed (SABSB) was attempted in comparison with the enzyme diacetyl reductase (EC 1.1.1.5). Diacetyl could be removed from beer by the adsorbants but they had undesirable effect on the beer quality such as color, pH, and alcohol levels. These adverse effects were not observed with the use of diacetyl reductase. The results favor the enzymatic removal of diacetyl from beer as a superior approach.  相似文献   

3.
The production of aroma compounds (acetoin and diacetyl) in fresh unripened cheese by Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 was studied at 30°C at different initial oxygen concentrations (0, 21, 50, and 100% of the medium saturation by oxygen). Regardless of the initial O2 concentration, maximal production of these compounds was reached only after all the citrate was consumed. Diacetyl and acetoin production was 0.01 and 2.4 mM, respectively, at 0% oxygen. Maximum acetoin concentration reached 5.4 mM at 100% oxygen. Diacetyl production was increased by factors of 2, 6, and 18 at initial oxygen concentrations of 21, 50, and 100%, respectively. The diacetyl/acetoin concentration ratio increased linearly with initial oxygen concentration: it was eight times higher at 100% (3.3%) than at 0% oxygen (0.4%). The effect of oxygen on diacetyl and acetoin production was also shown with other lactococci. At 0% oxygen, specific activity of α-acetolactate synthetase (0.15 U/mg) and NADH oxidase (0.04 U/mg) was 3.6 and 5.4 times lower, respectively, than at 100% oxygen. The increasing α-acetolactate synthetase activity in the presence of oxygen would explain the higher production of diacetyl and acetoin. The NADH oxidase activity would replace the role of the lactate dehydrogenase, diacetyl reductase, and acetoin reductase in the reoxidation of NADH, allowing accumulation of these two aroma compounds.  相似文献   

4.
Diacetyl contributes to the flavor profile of many fermented products. Its typical buttery flavor is considered as an off flavor in lager-style beers, and its removal has a major impact on time and energy expenditure in breweries. Here, we investigated the possibility of lowering beer diacetyl levels through evolutionary engineering of lager yeast for altered synthesis of α-acetolactate, the precursor of diacetyl. Cells were exposed repeatedly to a sub-lethal level of chlorsulfuron, which inhibits the acetohydroxy acid synthase responsible for α-acetolactate production. Initial screening of 7 adapted isolates showed a lower level of diacetyl during wort fermentation and no apparent negative influence on fermentation rate or alcohol yield. Pilot-scale fermentation was carried out with one isolate and results confirmed the positive effect of chlorsulfuron adaptation. Diacetyl levels were over 60% lower at the end of primary fermentation relative to the non-adapted lager yeast and no significant change in fermentation performance or volatile flavor profile was observed due to the adaptation. Whole-genome sequencing revealed a non-synonymous SNP in the ILV2 gene of the adapted isolate. This mutation is known to confer general tolerance to sulfonylurea compounds, and is the most likely cause of the improved tolerance. Adaptive laboratory evolution appears to be a natural, simple and cost-effective strategy for diacetyl control in brewing.  相似文献   

5.
Biosynthesis of Diacetyl in Bacteria and Yeast   总被引:8,自引:2,他引:6  
Both diacetyl and acetoin were produced by cell-free extracts and cultures of Pseudomonas fluorescens, Aerobacter aerogenes, Lactobacillus brevis, and Saccharomyces cerevisiae 299, whereas only acetoin was produced by cell-free extracts and cultures of Streptococcus lactis, Serratia marcescens, Escherichia coli, and S. cerevisiae strains 513 and 522. Cell-free extracts that produced diacetyl did not produce it from acetoin; they produced it from pyruvate, but only if acetyl-coenzyme A was was added to the reaction mixtures. Production of diacetyl by S. cerevisiae 299 was prevented by valine, inhibited by sodium arsenite, and stimulated by pantothenic acid. Valine did not prevent the production of acetoin. E. coli and the three strains of S. cerevisiae did not decarboxylate alpha-acetolactate but did use acetaldehyde in the production of acetoin from pyruvate. The other organisms produced acetoin from pyruvate via alpha-acetolactate.  相似文献   

6.
Diacetyl reductase from Kluyveromyces marxianus NRRL Y-1196 was purified 27.5-fold with a yield of 13% by ammonium sulphate fractionation, DEAE-anion exchange chromatography, hydroxyapatite chromatography and chromatofocusing. The purified enzyme was most active at pH 7.0 and exhibited optimal activity at 40°C. The K m and V max values for diacetyl were 2.5 mmol 1-1 and 0.026 mmol 1-1 min-1, respectively. The enzyme did not react with monoaldehydes or monoketones, but reduced acetoin, diacetyl and methylglyoxal with NADH as a cofactor. The enzyme had an isoelectric point (pl) of pH 5.8, and its molecular weight was 50 kDa.  相似文献   

7.
Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.  相似文献   

8.
A reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase with the ability to reduce diacetyl has been isolated from Escherichia coli and has been purified 800-fold to near homogeneity. The product of the reduction of diacetyl was shown to be acetoin. The enzyme proved to catalyze the oxidation of NADPH in the presence of both uncharged α- and β-dicarbonyl compounds. Even monocarbonyl compounds showed slight activity with the enzyme. On the basis of its substrate specificity, it is suggested that the enzyme functions as a diacetyl reductase. In contrast to other diacetyl reductases, the one reported here is specific for NADPH and does not possess acetoin reductase activity. The pH optimum of this enzyme was found to be between 6 and 7. The maximal velocity for the NADPH-dependent reduction of diacetyl was determined to be 9.5 μmol per min per mg of protein and the Km values for diacetyl and NADPH were found to be 4.44 mM and 0.02 mM, respectively. The molecular weight was estimated by gel filtration on Sephadex G-100 to be approximately 10,000.  相似文献   

9.
Four brewer's yeast strains carrying the alpha-ald gene of Klebsiella terrigena (ex. Aerobacter aerogenes) or of Enterobacter aerogenes on autonomously replicating plasmids were constructed. The alpha-ald genes were linked either to the ADC1 promoter or to the PGK1 promoter of yeast Saccharomyces cerevisiae. In pilot scale brewing (50 l) with three of these recombinant yeasts the formation of diacetyl in beer was so low during fermentation that lagering was not required. All other brewing properties of the strains were unaffected and the quality of finished beers was as good as that of finished beer prepared with the control strain. The total process time of beer production could therefore be reduced to 2 weeks, in contrast to about 5 weeks required in the conventional process.  相似文献   

10.
采用10 Kev低能N~+注入啤酒酵母,经筛选获得一菌株Lz37,再用150 MPa超高压处理菌株Lz37,经双乙酰平板筛选获得一菌株Gy3,其凝聚性很强,适合于在小麦汁中发酵啤酒,其发酵度为66%~68%,双乙酰含量低于口味阈值,遗传稳定性良好。将Gy3酵母定为全小麦啤酒生产应用酵母,命名为商啤3号(Sp-03)。SP-03啤酒酵母菌株的各项生理及生产性能都较优良,特别是在全小麦芽啤酒的酿造中适用性较强,经过对发酵工艺等的调整,用其酿制的啤酒口感纯正、淡爽、柔和。  相似文献   

11.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

12.
Aerobacter (Enterobacter) aerogenes wild type and three mutants deficient in the formation of acetoin and 2,3-butanediol were grown in a glucose minimal medium. Culture densities, pH, and diacetyl, acetoin, and 2,3-butanediol levels were recorded. The pH in wild-type cultures dropped from 7.0 to 5.8, remained constant while acetoin and 2,3-butanediol were formed, and increased to pH 6.5 after exhaustion of the carbon source. More 2,3-butanediol than acetoin was formed initially, but after glucose exhaustion reoxidation to acetoin occurred. The three mutants differed from the wild type in yielding acid cultures (pH below 4.5). The wild type and one of the mutants were grown exponentially under aerobic and anaerobic conditions with the pH fixed at 7.0, 5.8, and 5.0, respectively. Growth rates decreased with decreasing pH values. Aerobically, this effect was weak, and the two strains were affected to the same degree. Under anaerobic conditions, the growth rates were markedly inhibited at a low pH, and the mutant was slightly more affected than the wild type. Levels of alcohol dehydrogenase were low under all conditions, indicating that the enzyme plays no role during exponential growth. The levels of diacetyl (acetoin) reductase, lactate dehydrogenase, and phosphotransacetylase were independent of the pH during aerobic growth of the two strains. Under anaerobic conditions, the formation of diacetyl (acetoin) reductase was pH dependent, with much higher levels of the enzyme at pH 5.0 than at pH 7.0. Lactate dehydrogenase and phosphotransacetylase revealed the same pattern of pH-dependent formation in the mutant, but not in the wild type.  相似文献   

13.
Lactobacillus casei subsp. casei 2206 exhibited much lower levels of diacetyl reductase activity than Citr+Lactococcus lactis subsp. lactis 3022 but two-, three-, and more than eightfold-higher levels of diacetyl synthase, lactate dehydrogenase, and NADH oxidase activities, respectively. A requirement for metal ions by the diacetyl synthases in both species was observed. The extracts of strain 2206 but not strain 3022 produced more diacetyl from pyruvate when the reaction for diacetyl synthase was aerated than when it was conducted statically.  相似文献   

14.
Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.  相似文献   

15.
The applicability of a spectrophotometric assay of phosphoenolpyruvate car?ykinase to crude yeast extracts has been studied. The assay measured oxalacetate production by coupling to the malate dehydrogenase reaction (phosphoenolpyruvate + ADP + bicarbonate → oxalacetate + ATP; oxalacetate + NADH → malate + NAD). Disappearance of NADH depended strictly on the presence of phosphoenolpyruvate, bicarbonate, ADP, and Mn2+. Furthermore, the disappearance of NADH was shown to be accompanied by stoichiometric accumulation of malate. Addition of 10 mm quinolinate, which is a known inhibitor of liver phosphoenolpyruvate car?ykinase, completely prevented phosphoenolpyruvate-dependent NADH disappearance. These observations demonstrated that the assay provides a quantitative measure of phosphoenolpyruvate car?ykinase activity in crude extracts. The assay could be applied to crude extracts from yeast cells grown under laboratory conditions but not to extracts from commercially produced baker's yeast, because of an extremely high rate of endogeneous oxidation of NADH in the latter extracts. With the spectrophotometric assay, optimal activity was observed at pH 7.0 with both crude extracts and a 15-fold-purified preparation.  相似文献   

16.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

17.
Methods for Visualization of Enzymes in Polyacrylamide Gels   总被引:7,自引:1,他引:6       下载免费PDF全文
White bands resulting from precipitation of dodecan-1-ol liberated by hydrolysis of sodium dodecyl sulfate and decan-5-ol released by hydrolysis of decan-5-yl sulfate produced zymograms of the primary and secondary alkylsulfatases from Pseudomonas C(12)B. Gas-liquid chromatographic analyses of ether extracts of the precipitate-containing segments of the zymograms confirmed the identity of the alcohols which were not discerned in extracts of segments of the gels other than those containing precipitates. beta-Galactosidase from Escherichia coli was marked on zymograms by the liberation of o-nitrophenol from o-nitrophenyl-beta-D-galactoside, and arylsulfatase from Pseudomonas C(12)B was marked in gels by liberation of p-nitrophenol from p-nitrophenyl sulfate. Membrane-associated dissimilatory nitrate reductases from a nitrate respirer (Enterobacter aerogenes) and a denitrifier (Pseudomonas perfectomarinus) did not penetrate either 6.8 or 3% polyacrylamide gel but were demonstrable at the top of the gels. In the membrane-bound state, formate served as electron donor for nitrate reductase from E. aerogenes, and reduced nicotinamide adenine dinucleotide (NADH) served as donor for nitrate reductase from P. perfectomarinus. Both enzymes reduced nitrate at the expense of reduced benzyl viologen as well. Assimilatory nitrate reductase from E. aerogenes moved easily into the 6.8% gels (R(f) = 0.43 under the conditions of these experiments). The reduced dye served as electron donor for the assimilatory reductase, but formate and NADH did not. Incubation of the membrane-associated nitrate reductases with 2% Triton X-100 solubilized the enzymes and removed the capacity of formate and NADH to serve as electron donors. Both retained the ability to reduce nitrate at the expense of reduced benzyl viologen. The solubilized dissimilatory reductase from E. aerogenes moved further in the gels (R(f) = 0.49) than the soluble assimilatory reductase; the solubilized dissimilatory reductase from the denitrifier, P. perfectomarinus, moved further in the gels (R(f) = 0.64) than either of the enzymes from E. aerogenes.  相似文献   

18.
A bacterial gene encoding alpha-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the alpha-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the alpha-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.  相似文献   

19.
Continuous beer production was investigated in a high cell-density culture system which consisted of two stages for the fermentation and sedimentation of yeast cells. The continuous culture was carried out for a fermentation time of 5,500 h without contamination, at varying dilution rates and fermentation temperatures in the ranges of 0.017-0.033 h−1 and 6.5–8.5°C, respectively. This process was found to be suitable for continuous and stable beer brewing. Under these conditions, the cell concentration in the first stage was about 80 times as high as that in the exit of the second stage. Concentrations of viable cells, sugar and ethanol were maintained at 1.3 × 109 cells/ml, 25 and 36 g/l, respectively, and were hardly affected by fermentation temperature. Concentrations of ethyl acetate, isoamyl alcohol and isoamyl acetate were similar in the fermentation temperature ranges of 6.5–8.5°C, and the amounts at a fermentation temperature of 7°C were comparable to those of lager-type beer. Diacetyl flavor, which is known to be an effluent component that causes deterioration in the second stag e (young beer), was maintained at 1.2 ppm at a dilution rate and fermentation temperature of 0.022 h−1 and 7°C, respectively. The diacetyl flavor was due to the accumulation of vicinal diketone, the precursor of which is acetohydroxy acid. The acetohydroxy acid was converted to vicinal diketone by pretreatment at 60°C for 30 min. The vicinal diketone was then consumed by the yeast during after-fermentation at a fermentation temperature of 3°C. Using this method, total vicinal diketone decreased below 0.3 ppm for an after-fermentation time of 6.8 h, which was 225 times as fast as that of after-fermentation without the pretreatment. This process may make it possible to achieve continuous beer fermentation from the fermentation stage to after-fermentation for diacetyl removal.  相似文献   

20.
A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号