首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Turkey embryos were incubated in ovo or in long-term shell-less culture (ex ovo) for 14, 18, 22 or 26 days, at which time the concentrations of zinc, copper, iron, manganese and calcium in yolk and yolk sac membrane were determined. 2. Yolk manganese and calcium concentrations increased during incubation in ovo while the concentrations of zinc, copper and iron declined. The concentrations of zinc, copper and iron in yolk from ex ovo embryos did not decline. Yolk calcium concentration increased during incubation ex ovo, although to a much lesser extent than that observed in ovo. 3. The concentration of zinc, copper and iron declined in yolk sac tissue during incubation in ovo whereas no decline was observed for yolk sac tissue from ex ovo embryos. Yolk sac calcium and manganese concentrations increased during incubation in ovo and ex ovo, although the increase in calcium concentration for ex ovo yolk sac was much smaller than that observed in ovo. 4. A peak corresponding to metallothionein (MT) which bound both zinc and copper was isolated from yolk sac cytosol on day 14 of incubation in ovo using gel-permeation column chromatography. 5. Further fractionation of the MT peak by anion exchange chromatography revealed three metal-binding peaks designated MT-1, MT-2a and MT-2b. The majority of the zinc was bound to MT-2a and MT-2b whereas most of the copper was bound to a single peak (MT-2b). 6. The concentrations of zinc and copper in yolk sac cytosol reached a maximum on day 14 of incubation in ovo and declined through to day 28 (hatching).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. Turkey embryos were incubated in ovo or in long-term shell-less culture (ex ovo) for 14, 18, 22 or 26 days. The embryos incubated ex ovo exhibited a progressive decline in the rate of growth and were hypocalcemic and hypoproteinemic compared to their in ovo counterparts from day 18 to day 26 of incubation. 2. The ratio of the concentrations of alpha-fetoprotein and albumin (AFP/A) in serum was determined for both groups of embryos. The AFP/A ratio may be useful as a biochemical index to stage avian embryonic development. Using this index it was concluded that ex ovo embryos exhibited a progressive developmental retardation compared to in ovo embryos. 3. Significant differences were observed in serum trace element concentrations for embryos incubated in ovo vs ex ovo. Most notably, serum copper concentration was significantly lower in ex ovo embryos on days 18 and 22 of incubation and significantly higher on day 26 of incubation compared to serum from embryos incubated in ovo. 4. Livers from embryos incubated ex ovo exhibited significant differences trace element levels compared to those incubated in ovo. By day 26 of incubation the concentration and total amount of zinc and iron were markedly elevated, whereas copper was greatly reduced in the livers of embryos incubated ex ovo compared to the corresponding in ovo levels. 5. Hearts from embryos incubated ex ovo contained less zinc and copper and more iron by day 26 of incubation than those from embryos incubated in ovo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Frank O. Brady 《Life sciences》1983,32(26):2981-2987
In a continuing study of the importance of metallothionein (MT) in the growth and development of neonates, zinc and copper metabolism in rat brain, heart, lung, spleen, and thymus has been analyzed in 5, 10, 15, 20 and 25 day old rats. Total, cytosol, and MT zinc and copper concentrations and organ contents were determined. Zinc, but very little, if any copper was associated with MT in these organs. Concentrations ranged from 0.03 to 3.3 μg Zn in MT/g; organ contents ranged from 0.003 to 2.2 μg Zn in MT/organ. Brain exhibited the highest concentrations and contents of zinc in MT, approaching the levels found in kidneys. Rank order of organ contents of zinc in MT was brain > lung > heart, spleen, thymus, during this neonatal growth period. When organ growth was rapid, a large percentage (20–95%) of the cytosolic zinc present in these organs was associated with MT, as has been previously observed with liver, kidneys, and testes. None of these organs undergoes the dramatic changes in zinc and copper metabolism previously observed in neonatal rat liver and gastrointestinal tract, and in maturing testes. They are more comparable to kidneys in their concentrations of zinc in MT. Like testes, little copper is found in these organs.  相似文献   

4.
The concentrations of zinc, copper, and manganese in liver, kidney, duodenum, pancreas, testes, bone, and serum from control and untreated, spontaneously diabetic BB Wistar rats were compared. Chronic insulin deficiency resulted in significant alterations in the concentrations of one or more of these essential micronutrients in several tissues. The amounts of zinc and copper bound to metallothionein in the liver and kidney of untreated spontaneously diabetic rats were also markedly increased. The tissue trace metal status in diabetic rats was altered similarly in both male and female rats. Daily injections of insulin blocked many of the changes in the tissue concentrations of the metals. The effects of spontaneous diabetes on tissue trace metal status are quite similar to those reported for chemically induced diabetes. Thus, these results demonstrate that chronic endocrine imbalance is responsible for a series of tissue specific changes in the transport and metabolism of zinc, copper, and manganese.  相似文献   

5.
To determine if prenatal zinc deficiency has a persistent effect on metallothionein (MT) regulation, Swiss-Webster mice were mated and fed a diet containing either control (100 micrograms Zn/g) or low levels of zinc (5 micrograms Zn/g) from Day 7 of gestation to parturition. After birth all mice were given the control diet. Liver zinc and MT levels were 50% lower in newborn pups from dams fed the low zinc diets than in control pups. In control pups, liver zinc and MT concentrations were relatively stable during the first week of postnatal life. In contrast, in pups prenatally deprived of zinc, liver levels of zinc and MT increased such that by Day 3 of postnatal life, the levels were not significantly different from controls. At Day 56, serum IgM concentrations were significantly lower in the low zinc offspring. Liver zinc concentrations in the two groups of mice were similar at Day 70 postnatal, and in both groups liver MT levels were below detection limits. However, when Day 70 mice were given zinc injections to stimulate MT synthesis, the prenatally zinc deprived offspring showed markedly higher liver MT levels than did control mice given similar injections, despite similar liver zinc concentrations in the two groups. These results show that prenatal zinc deficiency has pronounced effects on postnatal MT metabolism which can persist into adulthood.  相似文献   

6.
Previous studies have demonstrated marked alterations in trace metal metabolism in male Sprague-Dawley rats following chemical induction of the diabetic state. To determine whether such changes represented a general response to the insulin-deficient condition the levels of zinc, copper, and maganese in liver, kidney, and intestine of normal and streptozotocin (STZ)-diabetic male rats of the Sprague-Dawley, Wistar, and Long-Evans strains, female Sprague-Dawley rats, and male mice were measured. Significantly increased concentrations of zinc, copper, and maganese in liver, and zinc and copper in kidney were found in STZ-diabetic rats, regardless of sex and strain. In contrast, the zinc and copper contents in liver and kidney of control and STZ-diabetic mice were similar, but hepatic manganese levels were significantly elevated in both organs of the diabetic mouse. The concentrations of all three metals were similar in the intestine of control and diabetic rodents. Higher amounts of zinc and copper were bound to metallothionein in the liver and kidney of the diabetic rats. Nicotinamide injection prior to STZ administration protected rats against the development of diabetes and alterations in trace metal status. These data indicate that specific alterations in the metabolism of zinc, copper and manganese during episodes of pancreatic hormonal imbalance represent a general phenomenon in the rat. A possible explanation for the differential response of the STZ-diabetic mouse is discussed.  相似文献   

7.
Two-wk-old broiler chicks were inoculated via crop intubation withEimeria acervulina at two doses: 105 or 106 sporulated oocysts/bird or withEimeria tenella at a dose of 105 sporulated oocysts/bird. Serum and liver samples were collected on days 3 and 6 post-inoculation (PI). There were no significant changes in serum or liver zinc, copper, and iron concentrations in any of the infected groups by 3 d PI. However, on d 6, PI serum protein was significantly reduced in all of the infected groups compared to their pair-fed controls. The chicks infected withE. tennella had significantly reduced serum zinc (1.20 vs 1.77 μg/mL) and iron (0.44 vs 1.28 μg/mL) concentrations and significantly elevated serum copper (0.28 vs 0.17 μg/mL) and ceruloplasmin levels (20.33 vs 11.11 μg/mL) compared to their pair-fed counterparts. Those chicks infected withE. acervulina (106 oocysts/bird) exhibited significantly reduced serum iron concentration by 6 days PI (0.90 vs 1.14 μg/mL). Liver zinc was significantly increased in the chicks infected withE. tenella (349 vs 113 μg/g dry liver wt), as was copper (24 vs 19 μg/g), whereas liver iron concentration was significantly reduced (172 vs 243 μg/g) compared to pair-fed controls. At both dose levels, the chicks infected withE. acervulina exhibited a significant reduction in liver iron by 6 d PI. Hepatic cytosol metals generally reflected whole tissue levels. Metallothionein (MT)-bound zinc was significantly elevated in the chicks infected withE. tenella. Iron bound to a high molecular weight, heat-stable protein fraction (presumably cytoplasmic ferritin) was significantly reduced in chicks infected withE. acervulina, as well as those infected withE. tenella. Collectively, the changes in serum zinc, copper, and iron concentrations, as well as the changes in hepatic zinc and MT-zinc concentrations in the chicks infected withE. tenella were similar to changes evoked during an acute phase response to infection. It is possible that a secondary bacterial infection or inflammation stemming from erosion of the lining of the cecum may play a role in the response of trace element metabolism to theE. tenella infection. Mentions of a trademarkr, proprietary product or specific equipment does not consitute a guarantee or warranty by the US Department of Agriculture and does not imply its approval to the exclusion of other products.  相似文献   

8.
Metallothionein (MT), a low molecular weight metal-binding protein, has been related to zinc and copper metabolism, the acute-phase response, and cellular proliferation. In this study, we investigated changes in zinc metabolism and MT gene expression occurring in tissue damage and repair during wound healing in mouse skin. Northern blot analysis revealed that a significant increase of MT mRNA was observed in the liver for 18 h after wounding, and serum zinc downfall and hepatic zinc uptake were observed. In situ hybridization analysis showed that no significant expression of MT mRNA was detected within the first 9 h after wounding. However, it was expressed restrictively in the proliferating epidermis of the wound margin after 12 h. Zinc began to accumulate in wounded skin after MT gene expressed. Northern blotting and immunocytochemical staining revealed that MT has been synthesized actively during the growth phase compared with the stationary phase in normal human epidermal keratinocytes in vitro. Intracellular zinc accumulation was observed in the proliferating cells. We concluded that hepatic MT plays an important role as an acute phase protein against host damage, and epidermal MT contributes in the supply of zinc to wounded tissue and activates proliferation for the regeneration of epidermis. Accepted: 2 July 1999  相似文献   

9.
Concentrations of copper, zinc, and iron were analyzed and compared in a number of tissues of adjuvant arthritic rats following 22 d of chronic treatment (per os) with either vehicle, aspirin or copper aspirinate, at doses of 100 mg/kg, 200 mg/kg, or 400 mg/kg. Such chronic treatment resulted in a negative balance in copper, zinc, and iron in many tissues. Among the tissues examined, liver and kidney exhibited the greatest changes in metal concentrations; brain and skeletal muscle exhibited the least. Arthritis-induced changes in the concentrations of all three metals in the liver were reversed upon treatment with aspirin. Treatment with copper aspirinate, on the other hand, resulted in an extremely high accumulation of copper in the liver. Arthritis-induced changes in copper, zinc, and iron concentrations in the pancreas and copper concentration in the plasma were generally not reversed upon treatment with either aspirin or copper aspirinate. Among the three metals examined, the degree of change observed as a result of drug treatments was greatest for iron and least for zinc. Finally, it appeared that the effects of aspirin and copper aspirinate on tissue metal concentrations were independent of the antiarthritic effects of these compounds.  相似文献   

10.
A factorial rat experiment using two dietary concentrations each of copper, zinc, and silicon was conducted to identify areas in which interrelationships involving silicon may exist. The concentrations used were (mg/kg of diet): copper, 1 and 5; zinc, 2 and 12; and silicon, 5 and 270. An antagonism between silicon and zinc, whereby increases in dietary levels of either one resulted in a reduction in blood plasma concentrations of the other, was demonstrated. The depressing effect of silicon on plasma concentrations of zinc and on alkaline phosphatase occurred only in zinc-deficient rats. However, silicon had no effect on growth. Effects on aortic composition, interpreted as beneficial, accompanied increases in the silicon content of copper-deficient diets. Silicon-dependent increases in the chloroform-methanol extractable fraction of aorta closely approximated a similar response to copper. High dietary silicon increased aortic elastin in copper-deficient rats when dietary zinc was adequate. The aortic effects of silicon, while mimicking the gross effects of copper, occurred in the absence of any silicon-related changes in blood copper concentrations. Interrelationships of silicon with other elements, particularly copper and zinc, may warrant consideration in future nutritional and metabolic studies.  相似文献   

11.
Further evidence that leukocytic endogenous mediator (LEM) is not endotoxin   总被引:2,自引:0,他引:2  
Despite several similarities, the effects of leukocytic endogenous mediator (LEM), a small protein, were further differentiated from bacterial endotoxin, a complex lipopolysaccharide, on the basis of non-identical biological activities. When either substance was administered to normal rats, each produced significant depression in serum zinc and iron concentrations, as well as a flux of amino acids to the liver. However, only LEM produced these effects on host metabolism in rats made tolerant to endotoxin. The effects of LEM and endotoxin on the synthesis and/or release of acute phase serum glubulins were also compared. Endotoxin produced a significant increase in only the α2-macrofeto-protein of normal rats. By contrast, LEM produced significant increases in all the acute phase serum protein fractions measured in either normal or endotoxin-tolerant rats. The differences and relationships between LEM and endotoxin on host responses are discussed.  相似文献   

12.
Serum insulin concentration and pancreatic insulin content were determined for turkey embryos incubated in ovo and in long-term shell-less culture (ex ovo). Insulin was undetectable (less than 10 pg) in serum from 87% of the ex ovo embryos compared with their in ovo counterparts. This was evident at all incubation ages, although insulin was detectable in more of the ex ovo embryos on Day 24. Insulin increased in the embryos incubated in ovo from 122 (Day 15) to levels exceeding 2000 pg/ml at hatching. Total pancreatic insulin content was greater in the cultured embryos on Days 15, 17, and 22 compared with their in ovo counterparts. Serum glucose was significantly greater (P less than 0.05) in the ex ovo embryos at all ages. In response to an infusion of L-arginine, serum insulin increased from 566 to 1256 pg/ml in the in ovo embryos, whereas no change was evident in the ex ovo embryos (233 vs 257 pg/ml). When embryos incubated in ovo were injected with insulin, a significant (P less than 0.05) reduction of serum glucose was observed at 60 min after injection. Serum glucose concentrations remained elevated in the embryos incubated ex ovo despite the insulin injection. Liver glucose 6-phosphatase activity, assessed on Days 15 and 22 of incubation, was found to be significantly (P less than 0.05) lower in the ex ovo embryos. Turkey embryos incubated in shell-less culture exhibited chronic hyperglycemia in concert with extremely low circulating levels of insulin. The pancreatic beta cells of these embryos were not responsive to arginine or elevated glucose. Taken together these findings suggest the occurrence of a diabetic-like condition in the ex ovo embryos. This defect in insulin secretion may, in part, be responsible for some of the developmental abnormalities characteristic of the turkey embryo cultured ex ovo.  相似文献   

13.
The variation in copper and zinc metabolism with tumor growth appears to relate directly to progression or regression of the disease. Historically, elevations in serum copper have been used as clinical indicators in hematological neoplasms since the early 1960s. More recently, we have monitored breast, colo-rectal, and lung cancer patients for a six-month period through courses of cytotoxic chemotherapy to determine copper and zinc changes with tumor growth. Groups were divided into responders and nonresponders blind to their serum copper and zinc levels. Trends in elevated serum copper with active disease have shown similar trends in decreasing values with effective therapy, but normalization was at a slower rate. Serum zinc levels in the same patients were markedly below normal and did not increase in the study period. The clinical significance or elevated serum copper and depressed serum zinc is discussed and the potential relationship between the two elements is explored. A solid tumor-bearing rat model, mammary adenocarcinoma R 3230 AC, has detailed more of the changes in copper and zinc metabolism with solid tumor growth. Serum copper and zinc varied with tumor mass, as in clinical studies. Liver values of the two essential metals did not change significantly, but liver-related copper-containing enzymes showed marked variations. Ceruloplasmin in serum increased with increasing tumor mass, as would be expected with the increased serum copper levels. Cytochrome c oxidase activity in liver homogenates from tumor-bearing animals was significantly depressed.  相似文献   

14.
Regulation of the ontogeny of rat liver metallothionein mRNA by zinc   总被引:1,自引:0,他引:1  
To investigate the role of metals in the regulation of the ontogenic expression of rat liver metallothionein (MT) mRNA, the concentrations of zinc, MT and MT mRNA were determined in livers of fetal and newborn rats from dams which were fed with a control or zinc-deficient or copper-deficient or iron-deficient diet from day 12 of gestation. The liver samples were analyzed for MT-mRNA levels using a mouse MT-I cRNA probe. Although the newborn hepatic levels of each metal (zinc or copper or iron) was specifically reduced corresponding to the respective mineral deficiencies, the hepatic concentrations of total MT and MT-I mRNA were significantly decreased only in pups born from zinc-deficient dams. Injection of the zinc-deficient newborn pups with 20 mg Zn as ZnSO4/kg restored with MT-I mRNA levels to slightly above control values within 5 h of injection. The hepatic zinc, MT and MT-I mRNA levels were observed to increase significantly in control fetal rat liver on days 17-21 of gestation but there were little changes in either zinc or MT in fetal livers from zinc-deficient dams during the late gestational period. The MT-I mRNA level also did not show an increase on days 18 and 20 of gestation in zinc-deficient fetal liver as compared to controls. These results demonstrate a direct role of zinc in hepatic MT gene expression in rat liver during late gestation. Immunohistochemical localization of MT using a specific antibody to rat liver MT showed that the staining for MT in zinc-deficient pup liver was mainly in the cytosol in contrast to the significant nuclear MT staining observed in control newborn rat liver. The results suggest that maternal zinc deficiency has a marked effect not only in decreasing the levels of hepatic MT and MT-I mRNA but also in the localization of MT in newborn rat liver.  相似文献   

15.
Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague–Dawley rats, which received the Lieber–DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity.  相似文献   

16.
The metallothionein (MT) gene expression profile was followed in rainbow trout during early embryo development and in liver and gonads during the period of sexual maturation. The hepatic MT mRNA levels increase at the end of sexual maturation in both male and female rainbow trout. Although both isoforms of MT mRNA accumulate in the liver, there is a preferential increase in MT-A in the female liver. Concomitantly with this increase in MT there is a redistribution of zinc and copper to MT. In the juvenile female there is an abundance of MT mRNA in the ovaries. This is correlated to high levels of zinc in the MT fraction upon Sephadex G-75 chromatography. During ovary development the MT mRNA levels and the MT-bound zinc levels drop, with an increase in zinc being bound to high-molecular-mass proteins. At ovulation most of the zinc is found in the membrane portion upon centrifugation. In contrast to the ovaries, there are no apparent changes in either trace metal distribution or MT mRNA levels during testis development. In the developing embryo there is an increase in MT-bound copper at gastrulation. This is accompanied by an increase in both isoforms of MT mRNA. At hatch both the copper and zinc levels increase in the MT fraction, with a concomitant increase in mainly MT-A mRNA. These findings indicate that the variations in MT mRNA levels during development are closely associated with metal regulation.  相似文献   

17.
An abnormality in copper metabolism during both the prenatal and postnatal (preweaning) periods was found to be associated with the autosomal recessive gene ”crinkled“ (cr) in mice. Liver copper concentration was significantly lower in crinkled mice (cr/cr) than in littermate controls (+/?) from 18 days of gestation to 20 days after birth. Crinkled mice older than 20 days of age had liver copper concentrations similar to those of littermate controls. Liver zinc and brain copper and zinc were similar in crinkled and noncrinkled mice at all times tested. In both crinkled and noncrinkled mice, brain copper concentration increased during the suckling period, and liver copper concentration decreased.  相似文献   

18.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

19.
Zinc, copper, and iron metabolism during porcine fetal development   总被引:2,自引:0,他引:2  
Zinc, copper, and iron levels in maternal and fetal pig tissues and fluids were measured starting on d 30 of gestation and continuing to term (d 114) at 10-d intervals. Fetal hematocrit increased from a low of 19% on d 30 to 32% by d 50, after which it remained above 30% to term. Amniotic fluid zinc, copper, and iron all reached maximal levels by d 60 of gestation. Maternal serum zinc levels fluctuated little during gestation, but fetal serum zinc concentration was significantly elevated above maternal levels during the second trimester. Fetal serum copper levels were significantly lower than maternal values throughout gestation and this was also the case for ceruloplasmin oxidase activity. Maternal serum iron reached its lowest level by d 80 of gestation when rate of transfer of iron to the developing fetuses was high. Fetal serum iron declined throughout gestation, reaching its lowest level on d 100. In general, fetal liver concentrations of zinc, copper, and iron were higher than the corresponding maternal values throughout gestation. Distinct increases were noted for fetal hepatic zinc and copper concentrations during the second trimester of pregnancy and these were accompanied by increases in cytosolic and metallothionein-bound zinc and copper levels. Maternal hepatic iron declined during the second trimester, reaching its lowest point on d 80, indicative of the shunting of maternal iron reserves to fetal tissues. Fetal kidney metal levels did not demonstrate any distinctive developmental patterns with respect to zinc, copper, or iron concentrations, but a general accumulation of each metal was observed as gestation progressed. The results of this study highlight some of the distinct changes occurring in the metabolism of zinc, copper, and iron in both maternal and fetal tissues and fluids during gestation in the pig. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other suitable products.  相似文献   

20.
The effects of induction of metallothionein (MT) on the toxicity of menadione were investigated in rat liver slices. The protective role of hepatic glutathione (GSH) was also studied and compared to that of MT. A 3-h incubation of rat liver slices with menadione (100-300 microM) containing medium (37 degrees C, pH 7.4, 95%O2:5%CO2) resulted in cellular toxicity, as shown by changes in cytosolic K, Ca and GSH concentrations and lactate dehydrogenase (LDH) leakage. A dose-dependent decrease in cytosolic K and GSH was observed concomitant with an increase in cytosolic Ca and LDH leakage after incubation with menadione. Pretreatment of rats with zinc sulphate (ZnSO4) (30 mg/kg body wt.) increased MT levels in liver slices and suppressed the toxicity of menadione. Intracellular GSH concentrations in liver slices were either depleted or increased by injection of rats with buthionine sulfoximine (BSO), (4 mmol/kg body wt.) and N-acetyl-L-cysteine (NAC) (1.6 g/kg body wt.), respectively. Intracellular GSH was found to be crucial in protection against menadione toxicity. Menadione toxicity was increased when the rats were injected with sodium phenobarbital (PB) (4 x 80 mg/kg body wt.). Pretreatment with Zn provided partial protection against menadione toxicity in liver slices from both BSO- and PB-injected rats. These findings suggest that induction of MT synthesis does protect against quinone-induced toxicity, but the role may be secondary to that of GSH. The mechanisms by which MT protect against menadione toxicity are still unclear but may involve protection of both redox cycling and sulphydryl arylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号