首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim  Global climate change is increasingly influencing ecosystems. Long-term effects on the species richness and composition of ecological communities have been predicted using modelling approaches but, so far, hardly demonstrated in the field. Here, we test whether changes in the composition of bird communities have been influenced by recent climate change.
Location  Europe.
Methods  We focus on the proportion of migratory and resident bird species because these groups are expected to respond differently to climatic change. We used the spatial relationship between climatic factors and bird communities in Europe to predict changes in 21 European bird communities under recent climate change.
Results  Observed changes corresponded significantly to predicted changes and could not be explained by the effects of spatial autocorrelation. Alternative factors such as changes in land use were tested in a first approximation as well but no effects were found.
Main conclusions  This study demonstrates that global climate change has already influenced the species richness and composition of European bird communities.  相似文献   

2.
In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits—arrival date and hatching date—and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits.  相似文献   

3.
Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well‐studied organisms have been instrumental for understanding climate‐change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between‐researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.  相似文献   

4.
Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past.  相似文献   

5.
Aims: To predict the risk of incursion of Crimean‐Congo haemorrhagic fever virus (CCHFV) in livestock in Europe introduced through immature Hyalomma marginatum ticks on migratory birds under current conditions and in the decade 2075–2084 under a climate‐change scenario. Methods and Results: A spatial risk map of Europe comprising 14 282 grid cells (25 × 25 km) was constructed using three data sources: (i) ranges and abundances of four species of bird which migrate from sub‐Saharan Africa to Europe each spring, namely Willow warbler (Phylloscopus trochilus), Northern wheatear (Oenanthe oenanthe), Tree pipit (Anthus trivialis) and Common quail (Coturnix coturnix); (ii) UK Met Office HadRM3 spring temperatures for prediction of moulting success of immature H. marginatum ticks and (iii) livestock densities. On average, the number of grid cells in Europe predicted to have at least one CCHFV incursion in livestock in spring was 1·04 per year for the decade 2005–2014 and 1·03 per year for the decade 2075–2084. In general with the assumed climate‐change scenario, the risk increased in northern Europe but decreased in central and southern Europe, although there is considerable local variation in the trends. Conclusions: The absolute risk of incursion of CCHFV in livestock through ticks introduced by four abundant species of migratory bird (totalling 120 million individual birds) is very low. Climate change has opposing effects, increasing the success of the moult of the nymphal ticks into adults but decreasing the projected abundance of birds by 34% in this model. Significance and Impact of the Study: For Europe, climate change is not predicted to increase the overall risk of incursion of CCHFV in livestock through infected ticks introduced by these four migratory bird species.  相似文献   

6.
7.
Plankton communities account for at least half of global primary production and play a key role in the global carbon cycle. Warming and acidification may alter the interaction chains in these communities from the bottom and top of the food web. Yet, the relative importance of these potentially complex interactions has not yet been quantified. Here, we examine the isolated and combined effects of warming, acidification, and reductions in phytoplankton and predator abundances in a series of factorial experiments. We find that warming directly impacts the top of the food web, but that the intermediate trophic groups are more strongly influenced by indirect effects mediated by altered top‐down interactions. Direct manipulations of predator and phytoplankton abundance reveal similar strong top‐down interactions following top predator decline. A meta‐analysis of published experiments further supports the conclusion that warming has stronger direct impacts on the top and bottom of the food web rather than the intermediate trophic groups, with important differences between freshwater and marine plankton communities. Our results reveal that the trophic effect of warming cascading down from the top of the plankton food web is a powerful agent of global change.  相似文献   

8.
There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence–absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south–north gradient in Finland, that between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on average, 37 km towards the north north‐east. The species‐specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north‐east (186 km), the species‐specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species‐specific characteristics and human land‐use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north‐west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.  相似文献   

9.
Bird migration times, climate change, and changing population sizes   总被引:1,自引:0,他引:1  
Past studies of bird migration times have shown great variation in migratory responses to climate change. We used 33 years of bird capture data (1970–2002) from Manomet, Massachusetts to examine variation in spring migration times for 32 species of North American passerines. We found that changes in first arrival dates – the unit of observation used in most studies of bird migration times – often differ dramatically from changes in the mean arrival date of the migration cohort as a whole. In our study, the earliest recorded springtime arrival date for each species occurred 0.20 days later each decade. In contrast, the mean arrival dates for birds of each species occurred 0.78 days earlier each decade. The difference in the two trends was largely explained by declining migration cohort sizes, a factor not examined in many previous studies. We found that changes in migration cohort or population sizes may account for a substantial amount of the variation in previously documented changes in migration times. After controlling for changes in migration cohort size, we found that climate variables, migration distance, and date of migration explained portions of the variation in migratory changes over time. In particular, short-distance migrants appeared to respond to changes in temperature, while mid-distance migrants responded particularly strongly to changes in the Southern Oscillation Index. The migration times of long-distance migrants tended not to change over time. Our findings suggest that previously reported changes in migration times may need to be reinterpreted to incorporate changes in migration cohort sizes.  相似文献   

10.
迁徙鸟类对中途停歇地的利用及迁徙对策   总被引:10,自引:3,他引:10  
马志军  李博  陈家宽 《生态学报》2005,25(6):1404-1412
中途停歇地是迁徙鸟类在繁殖地和非繁殖地之间的联系枢纽,对于迁徙鸟类完成其完整的生活史过程具有重要作用。从鸟类的迁徙对策、中途停歇地的选择、鸟类在中途停歇地的停留时间、体重变化和种群特征以及中途停歇地的环境状况等方面,回顾了中途停歇生态学在近年来的研究进展,并提出了在迁徙对策理论的实验研究,小型鸟类在中途停歇地的停歇时间及体重变化的准确确定等目前有待解决的问题。  相似文献   

11.
气候变化对野生植物的影响及保护对策   总被引:2,自引:0,他引:2  
黎磊  陈家宽 《生物多样性》2014,22(5):549-1609
以温室气体浓度持续上升、全球气候变暖为主要特征的全球气候变化对野生植物及生物多样性造成的潜在影响, 已经引起了国际学者的高度关注。本文总结了全球气候变化的现状与未来趋势, 概述了中国野生植物的保护及管理现状, 从不同侧面综述了国内外关于全球气候变暖对野生植物影响的研究进展和动态, 包括气候带北移、两极冰山退缩、高海拔山地变暖、海平面上升、早春温度提前升高、荒漠草原土壤增温、旱涝急转弯等对野生植物造成的影响以及气候变暖对种间关系和敏感植物类群的影响, 并从气候变化背景下全球生态系统敏感度、植物多样性、物种迁移与气候槽(sink areas)、物种适应与灭绝以及物候节律5个方面分析了未来全球变暖影响野生植物的总体趋势。在以后的野生植物保护与管理中, 应确定全球气候变化的植物多样性敏感区, 重点关注对气候变化敏感的植物类群以及气候要素改变植物-动物互作关系中的野生植物, 自然保护区的建设要重点考虑全球气候变化的影响, 通过在全球范围内对野生植物分布和种群变化进行长期、系统的追踪监测, 建立有效的数据库, 发展野生植物迁地保护的保育技术及信息网络, 发展有关野生植物对全球气候变化响应的量化指标及相应的模型。最后提出应将全球气候变化下野生植物保护与管理列入相关基金会的研究重点。  相似文献   

12.
1. Patterns of distribution of breeding austral migrant tyrant-flycatchers in temperate South America were quantified and analysed in conjunction with a variety of ecological, biogeographical and climatic variables.
2. The pattern of proportion of migratory to total breeding tyrannids was most strongly associated with latitude and two temperature variables, mean temperature of the coldest month and relative annual range of temperature.
3. The strong associations of latitude and temperature with percentage of migrants are consistent with the results of most similar investigations of the breeding distributions of migratory birds, both for migrants breeding in North America and in Europe, but contradict the hypothesis that habitat complexity plays a major role in structuring the proportion of migrants in communities of breeding birds.
4. The consistency of results among studies of migrants on different continents suggests that temperature and latitude, presumably a surrogate for one or more climatic variables, are globally significant factors in the breeding distributions of migratory birds.
5. The results for austral migrant flycatchers are consistent with the hypothesis that the prevalence of migration at any particular locality is ultimately dependent on the abundance of resources in the breeding season and the severity of the winter season, or on the difference in resource levels between summer and winter.  相似文献   

13.
In the Blackcap (Aves: Sylvia atricapilla), a widespread passerine noctural migrant, a “migratory divide” between SE- and SW-migrating populations exists in Central Europe at about 14° E and south of 52° N. The autumn migratory directions are known to have a genetic basis and are expressed in orientation cages in captivity. Migratory directions of birds in the contact zone between the two populations were studied by analysing ringing data and by testing three groups of hand-raised individuals in orientation cages. Available ringing data are insufficient to establish migratory directions in the contact zone north of the Alps. Hand-raised birds from south-west Germany and the most eastern part of Austria oriented SW and SE, respectively, confirming directions known from ringing recoveries. A sample of birds from the contact zone near Linz (Austria) oriented SW to NW (mean = 268°) and was significantly different from both adjoining populations. This contrasts with results of a cross-breeding experiment with mixed pairs of SW- and SE-migrants bred in captivity: The F1-offspring chose southerly directions, intermediate between both parental populations (Helbig, 1991). It is suggested, therefore, that a distinct subpopulation with a large fraction of birds wintering in the British Isles has established itself in the contact zone. Differences in directional choices between groups of siblings from this area indicate that intrapopulation genetic variability is present. This may have led to a rapid spread of the novel W-NW migratory direction, because north of the Alps strong selection seems to be acting against mixing of SE- with SW-migrating populations.  相似文献   

14.
Aim Many competing hypotheses seek to identify the mechanisms behind species richness gradients. Yet, the determinants of species turnover over broad scales are uncertain. We test whether environmental dissimilarity predicts biotic turnover spatially and temporally across an array of environmental variables and spatial scales using recently observed climate changes as a pseudo‐experimental opportunity. Location Canada. Methods We used an extensive database of observation records of 282 Canadian butterfly species collected between 1900 and 2010 to characterize spatial and temporal turnover based on Jaccard indices. We compare relationships between spatial turnover and differences in an array of relevant environmental conditions, including aspects of temperature, precipitation, elevation, primary productivity and land cover. Measurements were taken within 100‐, 200‐ and 400‐km grid cells, respectively. We tested the relative importance of each variable in predicting spatial turnover using bootstrap analysis. Finally, we tested for effects of temperature and precipitation change on temporal turnover, including distinctly accounting for turnover under individual species’ potential dispersal limitations. Results Temperature differences between areas correlate with spatial turnover in butterfly assemblages, independently of distance, sampling differences or the spatial resolution of the analysis. Increasing temperatures are positively related to biotic turnover within quadrats through time. Limitations on species dispersal may cause observed biotic turnover to be lower than expected given the magnitude of temperature changes through time. Main conclusions Temperature differences can account for spatial trends in biotic dissimilarity and turnover through time in areas where climate is changing. Butterfly communities are changing quickly in some areas, probably reflecting the dispersal capacities of individual species. However, turnover is lower through time than expected in many areas, suggesting that further work is needed to understand the factors that limit dispersal across broad regions. Our results illustrate the large‐scale effects of climate change on biodiversity in areas with strong environmental gradients.  相似文献   

15.
This paper presents an assessment of the possible effects of future climatic change on migratory birds. The assessment is based on two approaches: firstly an inventory is made of the environmental factors that may change which directly affect migratory birds. These factors include physical (temperature, hydrology, ocean and air streaming patterns) as well as biological (floral and faunal composition of ecosystems) and landuse aspects of the environment.Secondly, these possible changes were related to the annual cycles of migratory birds in order to estimate the problems that different groups of migratory birds have to cope with at various stages in their annual cycle. It is concluded that many migratory bird species will be influenced by climatic change, leading to adaptations in the birds annual cycle. The biggest problems may arise for those birds which depend on wetlands, because many of these wetlands may dessicate.  相似文献   

16.
Migratory connectivity, reflecting the extent by which migrants tend to maintain their reciprocal positions in seasonal ranges, can assist in the conservation and management of mobile species, yet relevant drivers remain unclear. Taking advantage of an exceptionally large (~150,000 individuals, 83 species) and more-than-a-century-long dataset of bird ringing encounters, we investigated eco-evolutionary drivers of migratory connectivity in both short- and long-distance Afro-Palearctic migratory birds. Connectivity was strongly associated with geographical proxies of migration costs and was weakly influenced by biological traits and phylogeny, suggesting the evolutionary lability of migratory behaviour. The large intraspecific variability in avian migration strategies, through which most species geographically split into distinct migratory populations, explained why most of them were significantly connected. By unravelling key determinants of migratory connectivity, our study improves knowledge about the resilience of avian migrants to ecological perturbations, providing a critical tool to inform transboundary conservation and management strategies at the population level.  相似文献   

17.
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.  相似文献   

18.
19.
The Mediterranean Sea is a hotspot of biodiversity, and climate warming is expected to have a significant influence on its endemic fish species. However, no previous studies have predicted whether fish species will experience geographic range extensions or contractions as a consequence of warming. Here, we projected the potential future climatic niches of 75 Mediterranean Sea endemic fish species based on a global warming scenario implemented with the Mediterranean model OPAMED8 and a multimodel inference, which included uncertainty. By 2070–2099, the average surface temperature of the Mediterranean Sea was projected to warm by 3.1 °C. Projections for 2041–2060 are that 25 species would qualify for the International Union for the Conservation of Nature and Natural Resources (IUCN) Red List, and six species would become extinct. By 2070–2099, 45 species were expected to qualify for the IUCN Red List whereas 14 were expected to become extinct. By the middle of the 21st century, the coldest areas of the Mediterranean Sea (Adriatic Sea and Gulf of Lion) would act as a refuge for cold‐water species, but by the end of the century, those areas were projected to become a ‘cul‐de‐sac’ that would drive those species towards extinction. In addition, the range size of endemic species was projected to undergo extensive fragmentation, which is a potentially aggravating factor. Since a majority of endemic fishes are specialists, regarding substratum and diet, we may expect a reduced ability to track projected climatic niches. As a whole, 25% of the Mediterranean Sea continental shelf was predicted to experience a total modification of endemic species assemblages by the end of the 21st century. This expected turnover rate could be mitigated by marine protected areas or accelerated by fishing pressure or competition from exotic fishes. It remains a challenge to predict how these assemblage modifications might affect ecosystem function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号