首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analysis of genetic covariances was used to identify the critical morphological components of wood productivity and to evaluate the efficiency of indirect selection for these components at the four levels of biological organization, (1) leaf, (2) branch, (3) main stem, and (4) whole-tree, in 4-yearPopulus deltoides ×P. simonii andP. deltoides ×P. nigra F1 progeny. A total of 44 morphometric traits measured at the four organizational levels showed varying genetic associations with productivity, variations being dependent on traits, developmental processes (current terminal, sylleptics, and proleptics), and hybridization combinations. Most of the leaf and branch traits on the current terminal and/or sylleptic branches had higher genetic correlations with stem-wood volume than those on proleptics, which resulted in larger indirect selection responses in volume, especially in DxS progeny. Indirect clonal selection on leaf size and area, branching capacity, and branch angle at age 4 years was expected to generate 10–35% more genetic gain per year in 6-year volume than direct selection on 6-year volume in the DxS progeny. The efficiency of indirect selection on the numbers of different order branches and bifurcation ratio was greater than 1.0 relative to that for direct selection for stemwood volume in the D × N progeny. Under the pressure of artificial selection for superior volume production, with the proportion selected=15%, the two F1 progeny populations exhibited distinct evolutionary divergence in tree geometry. The high-yielding D × S clones displayed a decurrent-like crown with strong apical dominance, whereas the crown ideotype for the high-yielding D × N clones was found to be excurrent-like and surrounded by dense foliage and branches.  相似文献   

2.
 A genetic approach to the understanding of tree architecture is to cross trees of contrasting features and to study their segregating F2 progenies. For this purpose, members of a 3-generation pedigree, combining Populus trichocarpa, P. deltoides, and their F1 and F2 offspring, were grown side by side in a clonally replicated plantation. At 2 and 3 years of growth, tree architecture was analyzed at the stem, branch, and leaf levels. In all generations, proleptic branches were more numerous, longer, and had more and larger leaves than sylleptics initiated in the same year. The analysis of variance revealed significant genotypic effects on growth, branch and leaf biometrics in the F2 family, with broad-sense heritabilities (H2) ranging from 0.50 to 0.80 for most traits. For branch and leaf traits, the H2 values were found to vary among branch types and crown positions. In year 2, the degree of genetic control was stronger for sylleptics than proleptics and for upper than lower crown positions. These patterns were followed in year 3, except that H2 values were more a function of position within crown, as a consequence of increased competition among trees. The genetic correlations between branch/leaf morphology and stem growth were also a function of branch type and crown position. Generally, traits on proleptics or at upper positions were more tightly correlated with height growth, whereas those on sylleptics or at lower positions, with basal area growth. By year 3, proleptic traits showed increased genetic correlations with both height and radial growth. The implications of these results for the construction of ideotypes are discussed. Received: 1 December 1995  相似文献   

3.
Summary While constructing a genetic linkage map of a hybrid poplar genome (Populus trichocarpa x P. deltoides), we identified several restriction fragment length polymorphismus (RFLPs) for which the parental trees are heterozygous. Although 8 of the 11 F1 hybrid offspring inherited, as expected, single RFLP alleles from each parent, 3 F1 trees in the mapping pedigree inherited both maternal alleles along with a single paternal allele at some loci. Aneuploidy or polyploidy in these 3 F1 trees due to partial or complete nondisj unction during female gametogenesis is the simplest explanation for this finding. Of the 3 f1 offspring with supernumerary RFLP alleles 2 have triploid nuclear DNA contents as measured by fluorescence flow cytometry; the 3rd F1 with supernumerary alleles has a sub-triploid nuclear DNA content and is probably aneuploid. Among the tri/aneuploid hybrids, leaf quantitative traits either are skewed toward those values characteristic of the P. trichocarpa female parent (adaxial stomate density, petiole length: blade length ratio; abaxial color) or show transgressive variation (epidermal cell size). Abaxial leaf color was used to screen a large population of P. trichocarpa x P. deltoides hybrids for further evidence of tri/aneuploidy. In each case where a white abaxial leaf surface was observed and the nuclear DNA content measured, the hybrid proved to be tri/aneuploid. All sexually mature female triploids examined were sterile, although the inflorescences completed their development in the absence of embryo formation. The (probably) aneuploid F1 hybrid is a fertile female. Of 15 female P. trichocarpa parents used in crosses to P. deltoides, 10 produced one or more tri/aneuploid hybrid offspring. In an intraspecific cross using a P. trichocarpa female that had produced triploid hybrids with five different P. deltoides males, no tri/aneuploid offpsring were found.  相似文献   

4.
The capacity to root from cuttings is a key factor for the mass deployment of superior genotypes in clonal forestry. We studied the genetic basis of rooting capacity by mapping quantitative trait loci (QTLs) that control growth rate and form of root traits in a full-sib family of 93 hybrids derived from an interspecific cross between two Populus species, P. deltoides and P. euramericana. The hybrid family was typed for different marker systems (including SSRs, AFLPs, RAPDs, ISSRs, and SNPs), leading to the construction of two linkage maps based on the female P. deltoides (D map) and male P. euramericana (E map) with a pseudotestcross mapping strategy. The two maps were scanned by functional mapping to detect QTLs that control early growth trajectories of two rooting traits, maximal single-root length and the total number of roots per cutting, measured at five time points in water culture. Of the six QTLs detected for these two growth traits, only one is segregating in P. deltoides with poor rooting capacity, while the other five are segregating in P. euramericana showing good rooting capacity. Tests with functional mapping suggest different developmental patterns of the genetic effects of these root QTLs in time course. Five QTLs were detected to change their effects on root growth trajectories with time, whereas one detected to affect root growth consistently in time course. Knowledge about the genetic and developmental control mechanisms of root QTLs will have important implications for the genetic improvement of vegetative propagation traits in Populus.  相似文献   

5.
6.
One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H 2) based on clonal means ranged from moderately high to high (0.50–0.90) for the traits studied, with H 2 values varying over age. The H 2 estimates reflected greater environmental noise in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3–4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.  相似文献   

7.
In their native riparian zones (floodplains), Populus deltoides (prairie cottonwood) and P. fremontii (Fremont cottonwood) commonly experience substantial branch die-back. These trees occur in semi-arid areas of North America and unexpectedly given the dry regions, they are exceptionally vulnerable to xylem cavitation, drought-induced air embolism of xylem vessels. We propose that the vulnerability to cavitation and branch die-back are physiologically linked; drought-induced cavitation underlies branch die-back that reduces transpirational demand enabling the remaining shoot to maintain a favorable water balance. This proposal follows field observation along various western North American rivers as precocious branch senescence, the yellowing and death of leaves on particular branches during mid- to late summer, was common for P. deltoides and P. fremontii during hot and dry periods of low stream-flow. Branches displaying precocious senescence were subsequently dead the following year. The proposed association between cavitation, precocious senescence and branch die-back is also supported by experiments involving external pressurization of branches to about 2.5 MPa with a branch collar or through an adjacent cut-branch. The treatments induced xylem cavitation and increased leaf diffusive resistance (stomatal closure) that was followed by leaf senescence and branch death of P. deltoides. P. trichocarpa (black cottonwood) appeared to be less affected by the pressurization treatment and this species as well P. angustifolia (narrowleaf cottonwood) and P. balsamifera (balsam poplar) seldom display the patchy summer branch senescence typical of P. deltoides and P. fremontii. ’Branch sacrifice’ describes this cavitation-associated senescence and branch die-back that may provide a drought adaptation for the prairie and Fremont cottonwoods. Received: 13 May 1999 / Accepted: 4 November 1999  相似文献   

8.

Background and Aims

Stomata play an important role in both the CO2 assimilation and water relations of trees. Therefore, stomatal traits have been suggested as criteria for selection of clones or genotypes which are more productive and have larger water-use efficiency (WUE) than others. However, the relationships between plant growth, WUE and stomatal traits are still unclear depending on plant material (genus, species, families, genotypes) and, more precisely, on the strength of the relationships between the plants. In this study, the correlations between these three traits categories, i.e. plant growth, WUE and stomatal traits, were compared in two related poplar families.

Methods

Stomatal traits (stomatal density, length and ratio adaxial : abaxial stomatal densities) of a selection of F1 genotypes and the parents of two hybrid poplar families Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N family, 50 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T family, 50 F1) were measured, together with stem height and circumference. Carbon isotope discrimination (Δ) was determined and used as an indicator of leaf-level intrinsic WUE.

Key Results

Leaves of hybrids and parents were amphistomatous, except for the P. trichocarpa parent. Both families displayed high values of heritability for stomatal traits and Δ. In the progeny, the relationship between stem circumference and Δ was weak for the D × N family, while abaxial and total stomatal density were positively associated with stem dimensions for the D × T family only.

Conclusions

Genetic variation in stomatal traits and Δ was large within as well as between the different poplar species and their hybrids, but there were no direct relationships between stomatal traits and plant growth or Δ. As already noticed in various poplar hybrids, the absence of, or the weak, relationship between Δ and plant growth allows the possibility of selecting poplar genotypes combining high productivity and high WUE. In this study, stomatal traits are of limited value as criteria for selection of genotypes with good growth and large WUE.Key words: Adaxial and abaxial stomatal density, stomatal length, heritability, water-use efficiency (WUE), F1 hybrids, breeding, Populus deltoides, Populus nigra, Populus trichocarpa  相似文献   

9.
Interspecific hybrids of Populus species are known for their superior growth. In this study, we examined the effect of the genetic background and contrasting environmental conditions on growth and searched for quantitative trait loci (QTL) affecting growth traits. To this end, two hybrid poplar families resulting from controlled crosses, Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N, 180 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T, 182 F1), were grown at two contrasting sites, Northern Italy and Central France. At the end of the second growing season, tree dimensions (stem height, circumference, and volume) were assessed. The performances of both families significantly differed within and between sites. Tree volume was significantly larger at the Italian site as compared to the French site. Genotype by environment interactions were significant but low for both families and for all growth traits. Tight correlations among the individual growth traits indicated that there may be a common genetic mechanism with pleiotropic effects on these growth traits. In line with previous studies, linkage groups I, VII, IX, X, XVI, XVII, and XIX appeared to have genomic regions with the largest effects on growth traits. This study revealed that (1) both families have high potential for selection of superior poplar hybrids due to the pronounced heterosis (hybrid vigor) and the large genetic variability in terms of growth and (2) the choice of site is crucial for poplar cultivation. Dillen and Storme contributed equally to the work. An erratum to this article can be found at  相似文献   

10.
 Nursery growth and dry weight were analyzed for F2 genotypes derived from Populus trichocarpa×P. deltoides that have been field tested with clonal replicates in three different environments. The correlations between nursery and plantation performance differed among the environments, with higher values at Boardman and Clatskanie (both planted with rooted cuttings) than Puyallup (planted with unrooted cuttings). At Puyallup, nursery height was more strongly associated with plantation growth than were nursery diameter and dry weight. Yet, this finding was not supported by QTL mapping. A single overdominant QTL on linkage group G affected the stem height of both seedlings and resprouts in the nursery but showed nonsignificant LOD scores for plantation height from ages 1 to 5 at Puyallup. A total of four QTLs were identified for nursery diameter, one of which on linkage group O also controlled plantation basal area at all ages. Two important nursery QTLs on linkage groups B and G were used to estimate the relative efficiency of marker-assisted selection for plantation productivity. Despite the fact that they were not detected in the plantation stage, these two QTLs could significantly increase the proportion of the phenotypic variance explained by plantation QTLs. Received: 5 February 1998 / Accepted: 1 April 1998  相似文献   

11.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

12.
We examined the genetic variation of leaf morphology and development in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen were those that show pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. Leaves were sampled from the current terminal, proleptic, and sylleptic branches. In the F2 generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype X crown-position interaction. Variation in leaf pigmentation, petiole length. And petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general, the estimates of QTL numbers from Wright's biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30 to 60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length. and midrib angle. In both traits. the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle. abaxial greenness, and petiole.  相似文献   

13.
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12–15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides × Populus nigra), balsam poplars (Populus maximowiczii × Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides × P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.  相似文献   

14.
 Advanced backcross QTL (AB-QTL) analysis is a new strategy for studying the effect of unadapted alleles on the agronomic performance of elite cultivated lines. In this paper we report results from the application of the AB-QTL strategy to cultivated tomato using the wild species Lycopersicon hirsutum LA1777 as the donor parent. RFLP genomic fingerprints were determined for 315 BC2 plants and phenotypic data were collected for 19 agronomic traits from approximately 200 derived BC3 lines which were grown in replicated field trials in three locations worldwide. Between 1 and 12 significant QTLs were identified for each of the 19 traits evaluated, with a total of 121 QTLs identified for all traits. For 25 of the QTLs (20%) corresponding to 12 traits (60%), the L. hirsutum allele was associated with an improvement of the trait from a horticultural perspective, despite the fact that L. hirsutum is overall phenotypically inferior to the elite parent. For example, L. hirsutum has fruit that remains green when ripe (lack of red pigment) yet alleles were found in this species that significantly increase red color when transferred into cultivated tomatoes. Wild alleles were also associated with increases in total yield and soluble solids (up to 15%) and brix×red yield (up to 41%). These results support the idea that one cannot predict the genetic potential of exotic germplasm based on phenotype alone and that marker-based methods, such as the AB-QTL strategy, should be applied to fully exploit exotic germplasm. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

15.
16.
Genetic control of the different attributes involved in peach quality has been investigated in an advanced backcross population derived from a cross between Prunus davidiana clone P1908, a wild parent with poor agronomic performance, and a commercial variety, Summergrand. A total of 24 physical and biochemical traits were investigated. Quantitative trait loci (QTLs) were detected for all the traits studied. We identified alleles from P. davidiana with agronomically favorable effects regarding fruit and stone sizes, sugar and acid concentrations and red flesh coloration, in clear contrast to its phenotype. We identified three main regions of the genome where alleles from P. davidiana had negative effects on multiple traits. In other regions, co-locations of QTLs with opposite effects on quality traits were also detected. We discuss the nature of these co-locations in the light of the probable physiological mechanisms involved. Strategies to cope with negative correlations between favorable traits and co-locations of P. davidiana alleles with negative effects on quality traits and positive effects regarding resistance to powdery mildew are discussed from a breeding point of view.  相似文献   

17.
We report the most complete genetic map to have been constructed for the genus Populus. This map includes 544 markers mapped onto 19 linkage groups, equivalent to the Populus chromosome number, with all markers displaying internally consistent linkage patterns. We estimate the genome length to be between 2,300 and 2,500 cM, based both on the observed number of crossovers in the maternal haplotypes, as well as the total observed map length. Genome coverage was estimated to be greater than 99.9% at 20 cM per marker. We did not detect obvious recombination repression in the maternal tree (a hybrid of Populus trichocarpa Hooker × P. deltoides Marsh.) compared to the paternal tree (pure P. deltoides). Finally, most markers exhibiting segregation distortion were derived from the donor parent in this backcross, and generally occurred in large contiguous blocks on two linkage groups. We hypothesize that divergent selection has occurred on chromosomal scales among the parental species used to create this pedigree, and explore the evolutionary implications of this observation. This genetic linkage map provides the most comprehensive view of the Populus genome reported to date and will prove invaluable for future inquiries into the structural and functional genomics, evolutionary biology, and genetic improvement of this ecologically important model species.Electronic Supplementary Material Supplementary material is available for this article at Communicated by D.B. Neale  相似文献   

18.
QTL analysis of potato tuberization   总被引:9,自引:1,他引:8  
Quantitative trait loci (QTLs) affecting tuberization were detected in reciprocal backcrosses between Solanum tuberosum and S. berthaultii. Linkage analyses were performed between traits and RFLP alleles segregating from both the hybrid and the recurrent parent using a set of framework markers from the potato map. Eleven distinct loci on seven chromosomes were associated with variation in tuberization. Most of the loci had small effects, but a QTL explaining 27% of the variance was found on chromosome 5. More QTLs were detected while following alleles segregating from the recurrent S. tuberosum parent used to make the backcross than were detected by following alleles segregating from the hybrid parent. More than half of the alleles favoring tuberization were at least partly dominant. Tuberization was favored by an allele from S. berthaultii at 3 of the 5 QTLs detected by segregation from the hybrid parent. The additive effects of the QTLs for tuberization explained up to 53% of the phenotypic variance, and inclusion of epistatic effects increased this figure to 60%. The most common form of epistasis was that in which presence of an allele at each of 2 loci favoring tuberization was no more effective than the presence of a favorable allele at 1 of the 2 loci. The QTLs detected for tuberization traits are discussed in relationship to those previously detected for trichome-mediated insect resistance derived from the unadapted wild species.Paper number 54 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

19.
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost.  相似文献   

20.
Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号