首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein.  相似文献   

4.
5.
6.
Protein structure prediction codes based on the associative memory Hamiltonian were used to probe the binding modes between the nuclear localization signal (NLS) polypeptide of NF-kappaB and the inhibitors IkappaBalpha and IkappaBbeta. Experimentally, it is known that the NLS polypeptide is unstructured in the NF-kappaB complex with DNA but it forms an extended helical structure with the NLS (residues 301-304) between the two helices in the NF-kappaB/IkappaBalpha complex. The simulations included the NF-kappaB(p65) and (p50) NLS polypeptides and various mutants alone and in the presence of IkappaBalpha and IkappaBbeta. The simulations predict that the NLS polypeptide by itself binds tightly to IkappaBalpha and IkappaBbeta. In the NF-kappaB (p50/p65) heterodimer, the p50 NLS is predicted to remain free to bind to importin alpha. In the interaction with IkappaBalpha, both p65 NLSs are predicted to be bound. In IkappaBbeta, the NLS polypeptide binds to two binding sites, as seen in the crystal structure, with one site heavily favored for stable binding.  相似文献   

7.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein.  相似文献   

8.
The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites.  相似文献   

9.
A 138-kDa nuclear protein was identified from HeLa cell extracts as a factor which binds to a previously described 20-base pair cis element located in the intron I of the c-myc gene. This myc intron factor (MIF) binds to the wild type c-myc sequence but does not bind under similar conditions to c-myc from Burkitt's lymphoma which contain point mutations in this binding region. We have demonstrated that the 138-kDa MIF is a phosphoprotein and that treatment of the purified MIF with potato acid phosphatase abolished binding to its 20-base pair c-myc recognition sequence; binding activity was protected by inclusion of phosphatase inhibitors. These results suggest that phosphorylation is required for the specific DNA-MIF interaction in vitro and that the phosphorylation state of MIF may be an important factor in controlling c-myc expression in vivo.  相似文献   

10.
11.
Incomplete RNA splicing is a key feature of the retroviral life cycle. This is in contrast to the processing of most cellular pre-mRNAs, which are usually spliced to completion. In Rous sarcoma virus, splicing control is achieved in part through a cis-acting RNA element termed the negative regulator of splicing (NRS). The NRS is functionally divided into two parts termed NRS5' and NRS3', which bind a number of splicing factors. The U1 and U11 small nuclear ribonucleoproteins interact with sequences in NRS3', whereas NRS5' binds several proteins including members of the SR [corrected] family of proteins. Among the proteins that specifically bind NRS5' is a previously unidentified 55-kDa protein (p55). In this report we describe the isolation and identification of p55. The p55 binding site was localized by UV cross-linking to a 31-nucleotide segment, and a protein that binds specifically to it was isolated by RNA affinity selection and identified by mass spectrometry as hnRNP H. Antibodies against hnRNP H immunoprecipitated cross-linked p55 and induced a supershift of a p55-containing complex formed in HeLa nuclear extract. Furthermore, UV cross-linking and electrophoretic mobility shift assays indicated that recombinant hnRNP H specifically interacts with the p55 binding site, confirming that hnRNP H is p55. The possible roles of hnRNP H in NRS function are discussed.  相似文献   

12.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

13.
14.
The full range of sequences that constitute nuclear localization signals (NLSs) remains to be established. Even though the sequence of the classical NLS contains polybasic residues that are recognized by importin-alpha, this import receptor can also bind cargo that contains no recognizable signal, such as STAT1. The situation is further complicated by the existence of six mammalian importin-alpha family members. We report the identification of an unusual type of NLS in human Ran binding protein 3 (RanBP3) that binds preferentially to importin-alpha3. RanBP3 contains a variant Ran binding domain most similar to that found in the yeast protein Yrb2p. Anti-RanBP3 immunofluorescence is predominantly nuclear. Microinjection of glutathione S-transferase-green fluorescent protein-RanBP3 fusions demonstrated that a region at the N terminus is essential and sufficient for nuclear localization. Deletion analysis further mapped the signal sequence to residues 40 to 57. This signal resembles the NLSs of c-Myc and Pho4p. However, several residues essential for import via the c-Myc NLS are unnecessary in the RanBP3 NLS. RanBP3 NLS-mediated import was blocked by competitive inhibitors of importin-alpha or importin-beta or by the absence of importin-alpha. Binding assays using recombinant importin-alpha1, -alpha3, -alpha4, -alpha5, and -alpha7 revealed a preferential interaction of the RanBP3 NLS with importin-alpha3 and -alpha4, in contrast to the simian virus 40 T-antigen NLS, which interacted to similar extents with all of the isoforms. Nuclear import of the RanBP3 NLS was most efficient in the presence of importin-alpha3. These results demonstrate that members of the importin-alpha family possess distinct preferences for certain NLS sequences and that the NLS consensus sequence is broader than was hitherto suspected.  相似文献   

15.
The interaction of calmodulin (CaM) with heat-shock and other binding proteins was studied in rat adenocarcinoma cells. Cells were equilibrium-labeled for 48 h prior to heating for 1 h at 43 degrees C, or pulse-labeled for 2 h at 37 degrees C after heating, to monitor the effect of heat on the affinity of CaM-binding proteins synthesized under these conditions. A CaM antagonist shown to sensitize to heat killing, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], was used in competition assays to help monitor any changes in affinity. We found that heating tended to reduce the CaM-binding of proteins synthesized before heating relative to their 37 degrees C controls and proteins synthesized after heating tended to have increased binding relative to their respective controls. Members of the heat-shock protein (hsp) 90-, 70-, and 26-kDa families were among the proteins that bound to CaM and were eluted by W-7. The peak elution fractions for the hsp's and other cellular proteins varied, but hsp-70 eluted in the early fractions. The hsp-70 family was also found to be among a number of W-7-binding proteins. We conclude that the assumption that CaM antagonists potentiate killing of heated cells solely by competing nonspecifically for CaM-binding protein sites on CaM does not explain the process completely. These antagonists could also act by competing for CaM-binding sites with specific proteins whose interaction with CaM is important for survival following heating, or by directly binding to other proteins whose function is important for survival and inhibiting their activity. We do not have sufficient data to discern the predominant mechanism among these possibilities, but we believe all are likely to occur in heated cells and speculate that inhibition of the functions of the hsp-70 family is important in several of these antagonist actions.  相似文献   

16.
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.  相似文献   

17.
18.
Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin alpha- and beta-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin alpha fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin alpha. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.  相似文献   

19.
The Ire1p transmembrane receptor kinase/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of targeting green fluorescent protein to the nucleus of yeast cells in a process requiring proteins involved in the Ran GTPase cycle that facilitates nuclear import. Mutagenic analysis and importin binding studies demonstrate that the Ire1p linker region contains overlapping potential NLSs: at least one classical NLS (within sequences 642KKKRKR647 and/or 653KKGR656) that is recognized by yeast importin alpha (Kap60p) and a novel betaNLS (646KRGSRGGKKGRK657) that is recognized by several yeast importin beta homologues. Kinetic binding data suggest that binding to importin beta proteins would predominate in vivo. The UPR, and in particular ER stress-induced HAC1 mRNA splicing, is inhibited by point mutations in the Ire1p NLS that inhibit nuclear localization and also requires functional RanGAP and Ran GEF proteins. The NLS-dependent nuclear localization of Ire1p would thus seem to be central to its role in UPR signaling.  相似文献   

20.
Matsuura Y  Stewart M 《The EMBO journal》2005,24(21):3681-3689
Nuclear import of proteins containing classical nuclear localization signals (NLS) is mediated by the importin-alpha:beta complex that binds cargo in the cytoplasm and facilitates its passage through nuclear pores, after which nuclear RanGTP dissociates the import complex and the importins are recycled. In vertebrates, import is stimulated by nucleoporin Nup50, which has been proposed to accompany the import complex through nuclear pores. However, we show here that the Nup50 N-terminal domain actively displaces NLSs from importin-alpha, which would be more consistent with Nup50 functioning to coordinate import complex disassembly and importin recycling. The crystal structure of the importin-alpha:Nup50 complex shows that Nup50 binds at two sites on importin-alpha. One site overlaps the secondary NLS-binding site, whereas the second extends along the importin-alpha C-terminus. Mutagenesis indicates that interaction at both sites is required for Nup50 to displace NLSs. The Cse1p:Kap60p:RanGTP complex structure suggests how Nup50 is then displaced on formation of the importin-alpha export complex. These results provide a rationale for understanding the series of interactions that orchestrate the terminal steps of nuclear protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号