首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range. We examined control extracts and RNA interference (RNAi) extracts prepared soon after TbMP42 was depleted (when primary effects should be most evident) and three days later (when precedent shows secondary effects can become prominent). This analysis shows TbMP42 is critical for cleavage of editing substrates by both the U-deletional and U-insertional endonucleases. However, on simple substrates that assess cleavage independent of editing features, TbMP42 is similarly required only for the U-deletional endonuclease, indicating TbMP42 affects the two editing endonucleases differently. Supplementing RNAi extract with recombinant TbMP42 partly restores these cleavage activities. Notably, we find that all the other editing steps (the 3'-U-exonuclease [3'-U-exo] and ligation steps of U-deletion and the terminal-U-transferase [TUTase] and ligation steps of U-insertion) remain at control levels upon RNAi induction, and hence are not dependent on TbMP42. This contrasts with an earlier report that TbMP42 is a 3'-U-exo that may act in U-deletion and additionally is critical for the TUTase and/or ligation steps of U-insertion, observations our data suggest reflect indirect effects of TbMP42 depletion. Thus, trypanosomes require TbMP42 for both endonucleolytic cleavage steps of RNA editing, but not for any of the subsequent steps of the editing cycles.  相似文献   

2.
RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage. The rates of both reactions exhibit bell-shaped dependence on pH, with pK(a) values of 5.7 +/- 0.1 and 7.7 +/- 0.1 for cleavage and 6.1 +/- 0.3 and 6.9 +/- 0.3 for ligation. The data provide good evidence for general acid-base catalysis by the nucleobases.  相似文献   

3.
4.
RNA as an enzyme     
The catalytic activity of ribonucleic acid is reviewed, with the intervening sequence (IVS) of the ribosomal RNA precursor of Tetrahymena serving as a major example. The IVS catalyzes its own excision from the precursor RNA and at the same time ligation of the flanking sequences, a reaction termed self-splicing. The excised IVS RNA can act as an enzyme to catalyze sequence-specific cleavage and ligation reactions on substrate RNA molecules. The RNA polymerization activity of the IVS supports the possibility that RNA catalysis could have been important in establishing a prebiotic self-replicating system. Other systems in which RNA catalysis has been found include related group I IVSs, group II IVSs, ribonuclease P, and certain plant infectious RNAs.  相似文献   

5.
6.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

7.
The less abundant polarity of the satellite RNA of tobacco ringspot virus, designated sTobRV(-)RNA, contains a ribozyme and its substrate. We demonstrate that the ribozyme can catalyze the ligation of substrate cleavage products and that oligoribonucleotides, termed 'mini-monomers' and containing little more than covalently attached ribozyme and substrate cleavage products, circularized spontaneously, efficiently and reversibly. The kinetics of ligation and cleavage of one such mini-monomer was consistent with a simple unimolecular reaction at some temperatures. Evidence suggests that the circular ligation product includes a 5 bp stem that is connected to a 4 bp stem by a bulge loop. Reduction of the bulge loop to one nt is expected to place the 4 and 5 bp helices in a nearly coaxial, rather than an angled or parallel, orientation. Such molecules did not circularize in a unimolecular reaction but did when incubated with second, trans-acting oligoribonucleotides that had either the original or a substituted 4 bp helix. These results suggest that a bulge loop that is too small prevents formation of geometry essential for unimolecular ligation. We suggest the term 'paperclip' to represent the arrangement of RNA strands in the region of sTobRV(-)RNA that participates in the cleavage and ligation reactions.  相似文献   

8.
A B Burgin  Jr  B N Huizenga    H A Nash 《Nucleic acids research》1995,23(15):2973-2979
DNA topoisomerases and DNA site-specific recombinases are biologically important enzymes involved in a diverse set of cellular processes. We show that replacement of a phosphodiester linkage by a 5'-bridging phosphorothioate linkage creates an efficient suicide substrate for calf thymus topoisomerase I and lambda integrase protein (Int). Although the bridging phosphorothioate linkage is cleaved by these enzymes, the 5'-sulfhydryl which is generated is not competent for subsequent ligation reactions. We use the irreversibility of Int-promoted cleavage to explore conditions and factors that contribute to various steps of lambda integrative recombination. The phosphorothioate substrates offer advantages over conventional suicide substrates, may be potent tools for inhibition of the relevant cellular enzymes and represent a unique tool for the study of many other phosphoryl transfer reactions.  相似文献   

9.
Components essential for nuclear pre-messenger RNA splicing have been partially purified from HeLa cell nuclear extracts by chromatography on DEAE-Sepharose, heparin-Sepharose, Mono Q, and Mono S. We have obtained six fractions which, when combined, efficiently splice a synthetic adenovirus 2 major late RNA substrate in vitro. All fractions contain components that support the formation of splicing intermediates (the cleaved 5' exon and the intron-exon 2 lariat). At least one of the fractions also contains an activity that is essential for the second step in the splicing reaction, namely cleavage at the 3' splice site and exon ligation. Two of the fractions are enriched in the major small nuclear ribonucleoprotein particles U1, U2, U4/U6, and U5. They participate in the formation of the splicing complexes which precedes the cleavage and ligation reactions. The remaining four fractions appear to contain protein factors, as suggested by their resistance to micrococcal nuclease.  相似文献   

10.
11.
The relationship between hairpin ribozyme structure, and cleavage and ligation kinetics, and equilibria has been characterized extensively under a variety of reaction conditions in vitro. We developed a quantitative assay of hairpin ribozyme cleavage activity in yeast to learn how structure-function relationships defined for RNA enzymes in vitro relate to RNA-mediated reactions in cells. Here, we report the effects of variation in the stability of an essential secondary structure element, H1, on intracellular cleavage kinetics. H1 is the base-paired helix formed between ribozyme and 3' cleavage product RNAs. H1 sequences with fewer than three base-pairs fail to support full activity in vitro or in vivo, arguing against any significant difference in the stability of short RNA helices under in vitro and intracellular conditions. Under standard conditions in vitro that include 10 mM MgCl(2), the internal equilibrium between cleavage and ligation of ribozyme-bound products favors ligation. Consequently, ribozymes with stable H1 sequences display sharply reduced self-cleavage rates, because cleavage is reversed by rapid re-ligation of bound products. In contrast, ribozymes with as many as 26 base-pairs in H1 continue to self-cleave at maximum rates in vivo. The failure of large products to inhibit cleavage could be explained if intracellular conditions promote rapid product dissociation or shift the internal equilibrium to favor cleavage. Model experiments in vitro suggest that the internal equilibrium between cleavage and ligation of bound products is likely to favor cleavage under intracellular ionic conditions.  相似文献   

12.
13.
The hairpin ribozyme (HPR) is a naturally existing RNA that catalyzes site-specific RNA cleavage and ligation. At 37 degrees C and in the presence of divalent metal ions (M(2+)), the HPR efficiently cleaves RNA substrates in trans. Here, we show that the HPR can catalyze efficient M(2+)-independent ligation in trans in aqueous solutions containing any of several alcohols, including methanol, ethanol, and isopropanol, and millimolar concentrations of monovalent cations. Ligation proceeds most efficiently in 60% isopropanol at 37 degrees C, whereas the reverse (cleavage) reaction is negligible under these conditions. We suggest that dehydration of the RNA is the key factor promoting HPR activity in water- alcohol solutions. Alcohol-induced ribozyme ligation may have practical applications.  相似文献   

14.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

15.
The hairpin ribozyme reversibly cleaves phosphodiesters of RNA substrates to generate products with 5' hydroxyl and 2',3'-cyclic phosphate termini. We previously found that the rate constant for ligation is tenfold faster than the rate constant for cleavage under standard conditions. The hammerhead ribozyme catalyzes the same reactions but is reported to favor cleavage relative to ligation by more than 100-fold under the same conditions. To explore the basis for this difference, we examined the influence of temperature, ions and pH on the hairpin ribozyme internal equilibrium. Under the same conditions, the loss of entropy associated with ligation is less for the hairpin than for the hammerhead ribozyme, consistent with the notion that a more rigid hairpin structure undergoes a smaller decrease in dynamics upon ligation than the more flexible hammerhead structure. Increased salt and reduced temperature shift the equilibrium toward ligation while pH has little effect, suggesting that conditions that stabilize RNA structure tend to promote ligation. The hairpin ribozyme appears to take up at least one tri- or divalent cation or two monovalent cations upon ligation. The efficiency with which different cations promote ligation depends strongly on valence and, less strongly, on ionic radius or electronegativity. This pattern of cation selectivity suggests that cations promote ligation through delocalized electrostatic shielding, perhaps interacting with a region of especially high charge density in the ligated ribozyme. Changes in ionic conditions produce large but compensating changes in enthalpy and entropy for cleavage and ligation. Thus, in addition to any increase in ribozyme dynamics associated with cleavage, re-organization of associated cations contributes significantly to hairpin ribozyme thermodynamics.  相似文献   

16.
17.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

18.
The end-healing and end-sealing steps of the phage T4-induced RNA restriction-repair pathway are performed by two separate enzymes, a bifunctional polynucleotide 5'-kinase/3'-phosphatase and an ATP-dependent RNA ligase. Here we show that a single trifunctional baculovirus enzyme, RNA ligase 1 (Rnl1), catalyzes the identical set of RNA repair reactions. Three enzymatic activities of baculovirus Rnl1 are organized in a modular fashion within a 694-amino acid polypeptide consisting of an autonomous N-terminal RNA-specific ligase domain, Rnl1-(1-385), and a C-terminal kinase-phosphatase domain, Rnl1-(394-694). The ligase domain is itself composed of two functional units. The N-terminal module Rnl1-(1-270) contains essential nucleotidyltransferase motifs I, IV, and V and suffices for both enzyme adenylylation (step 1 of the ligation pathway) and phosphodiester bond formation at a preactivated RNA-adenylate end (step 3). The downstream module extending to residue 385 is required for ligation of a phosphorylated RNA substrate, suggesting that it is involved specifically in the second step of the end-joining pathway, the transfer of AMP from the ligase to the 5'-PO(4) end to form RNA-adenylate. The end-healing domain Rnl1-(394-694) consists of a proximal 5'-kinase module with an essential P-loop motif ((404)GSGKS(408)) and a distal 3'-phosphatase module with an essential acylphosphatase motif ((560)DLDGT(564)). Our findings have implications for the evolution of RNA repair systems and their potential roles in virus-host dynamics.  相似文献   

19.
The hairpin ribozyme acts as a reversible, site-specific endoribonuclease that ligates much more rapidly than it cleaves cognate substrate. While the reaction pathway for ligation is the reversal of cleavage, little is known about the atomic and electrostatic details of the two processes. Here, we report the functional consequences of molecular substitutions of A9 and A10, two highly conserved nucleobases located adjacent to the hairpin ribozyme active site, using G, C, U, 2-aminopurine, 2,6-diaminopurine, purine, and inosine. Cleavage and ligation kinetics were analyzed, tertiary folding was monitored by hydroxyl radical footprinting, and interdomain docking was studied by native gel electrophoresis. We determined that nucleobase substitutions that exhibit significant levels of interference with tertiary folding and interdomain docking have relatively large inhibitory effects on ligation rates while showing little inhibition of cleavage. Indeed, one variant, A10G, showed a fivefold enhancement of cleavage rate and no detectable ligation, and we suggest that this property may be uniquely well suited to intracellular targeted RNA cleavage applications. Results support a model in which formation of a kinetically stable tertiary structure is essential for ligation of the hairpin ribozyme, but is not necessary for cleavage.  相似文献   

20.
ABSTRACT: BACKGROUND: RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers. RESULTS: To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5' pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors. CONCLUSIONS: Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65 deg C should reduce the constraints of RNA secondary structure in RNA ligation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号