首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel antifungal Bacillus thuringiensis strain 19–22, ssp. kurstaki (H3a3b3c), was characterised. This strain included cry1Aa, cry1Ab, cry1Ac, and cry1D, which have high insecticidal activities against lepidopteran larvae other than Spodoptera exigua. To expand the host spectrum, a cry1E gene whose product is active against S. exigua was introduced into the isolate. The transformant successfully expressed the Cry1E protein without any loss of its original antifungal activities. These results indicate that this recombinant strain exhibits dual activities and may be used as an integrated control agent to control plant diseases and insect pests.  相似文献   

2.
《Biological Control》2007,42(3):291-295
The toxicity of a collection of 1400 isolates of Bacillus thuringiensis was assessed against the Lepidoptera Spodoptera frugiperda, Anticarsia gemmantalis and Plutella xylostella. Twenty seven isolates showed toxicity to the larvae of these insects with three isolates demonstrating significantly greater potency than the standard strain against Lepidoptera, B. thuringiensis serovar kurstaki HD1. These isolates were all found to produce bipyramidal crystals and major spore-associated protein bands of approximately 130 and 65 kDa, consistent with the detection of at least one cry1 and one cry2 family gene in each. The high level of insecticidal activity of these isolates makes them excellent candidates for further development for use in the field.  相似文献   

3.
The insecticidal crystal protein(s) encoded by cry gene(s) of Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. A new 3′-truncated cry1Ab gene was cloned from an indigenous isolate of Bt, A19-31. Nucleotide sequencing and homology search revealed that the deduced amino acid sequence of Cry1Ab toxin of Bt strain A19-31 had a variation of two amino acid residues with the holotype sequence, Cry1Ab1. Expression of the 3′-truncated cry1Ab gene was studied in an acrystalliferous strain of Bt (4Q7). SDS-PAGE and immunostrip analysis of spore-crystal mixture revealed a low level expression of the 3′-truncated cry1Ab gene. Insecticidal activity assay showed that the recombinant 3′-truncated cry1Ab gene product was toxic to larvae of both Helicoverpa armigera and Spodoptera litura.  相似文献   

4.
Bacillus thuringiensis 1–3, isolated from a Korean soil sample, was determined to belong to ssp. aizawai (H7) type by an H antiserum agglutination test, and produced bipyramidal-shaped crystal proteins with a molecular weight of 130 kDa. PCR analysis with specific cry gene primers showed that B. thuringiensis 1–3 contained cry1Aa, cry1Ab, cry1C, cry1D and cry2A genes, differing from that of serovar of aizawai (reference strain) which contains cry1Aa, cry1Ab, cry1C and cry1D genes. In contrast to the reference strain, B. thuringiensis aizawai showed insecticidal activity against Plutella xylostella larvae, the B. thuringiensis 1–3 showed insecticidal activity against not only P. xylostella, but also Aedes aegypti, owing to its Cry2A crystal protein. In this study, we modified the plasmid capture system (PCS) through in vitro transposition to clone small cryptic plasmids from B. thuringiensis 1–3. Fifty-three clones were acquired, and their sizes were approximately 10 kb. Based on the sequence analysis, they were classified into four groups, showing similarities with four known B. thuringiensis plasmids, pGI3, pBMB175, pGI1 and pGI2, respectively. One of the pGI3-like clones, pBt1–3, was fully sequenced, and its putative open reading frames (ORFs), Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified. The structure of pBt1–3 showed high similarity with pGI3, which is of the rolling-circle replication (RCR) group VI family.  相似文献   

5.
6.
The Bacillus thuringiensis subsp. sichuansis MC28 strain produces spherical parasporal crystals during sporulation and exhibits remarkable insecticidal activity against dipteran and lepidopteran pests. We characterized a novel cry gene (cry69Aa1), which was found in the pMC95 plasmid of the MC28 strain. The cry69Aa1 gene was inserted into a shuttle vector (pSTK) and expressed in an acrystalliferous mutant B. thuringiensis HD73?. In this transformant, a large number of spherical parasporal crystals, which were toxic to Culex quinquefasciatus (Diptera), were formed.  相似文献   

7.
In order to find novel strains of Bacillus thuringiensis that are toxic to some of the major pests that impact economically important crops in Argentina, we initiated a search for B. thuringiensis isolates native to Argentina. We succeeded in assembling a collection of 41 isolates, some of which show a high potential to be used in biological control programs against lepidopteran and coleopteran pests. About 90% of the strains showed toxicity against Spodoptera frugiperda and Anticarsia gemmatalis, two important lepidopteran pests in Argentina. It is noteworthy that only one of these strains contained a cry1-type gene, while another isolate showed a dual toxicity against the lepidopteran and coleopteran insects assayed. Genetic characterization of the strains suggests that the collection likely harbors novel Cry proteins that may be of potential use in biological insect pest control.  相似文献   

8.
By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strain's parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.  相似文献   

9.
An indigenously isolated strain of Bacillus thuringiensis subsp. kenyae exhibited toxicity against lepidopteran as well as dipteran insects. The lepidopteran active cry1Ac protoxin gene coding sequence of 3.5 kb from this strain was cloned into vector pET28a(+). However, it could not be expressed in commonly used Escherichia coli expression hosts, BL21(DE3) and BL21(DE3)pLysS. This gene is classified as cry1Ac17 in the B. thuringiensis toxic nomenclature database. The coding sequence of this gene revealed that it contains about 3% codons, which are not efficiently translated by these expression hosts. Hence, this gene was expressed in a modified expression host, Epicurian coli BL21-Codonplus (DE3)-RIL. The expression of gene yielded a 130-kDa Cry1Ac17 protein. The protein was purified and its toxicity was tested against economically important insect pests, viz., Helicoverpa armigera and Spodoptera litura. LC50 values obtained against these insects were 0.1 ng/cm3 and 1231 ng/cm2, respectively. The higher toxicity of Cry1Ac17 protein, compared to other Cry1Ac proteins, toward these pests demonstrates the potential of this isolate as an important candidate in the integrated resistance management program in India.  相似文献   

10.
A new polymerase chain reaction–restriction fragment length polymorphism method for the identification of cry8-type genes from Bacillus thuringiensis has been established by designing a pair of new universal primers. By this method, a novel gene, cry8Ga1, encoding a polypeptide of 1,157 amino acids with a deduced molecular mass of 131.2 kDa was identified and cloned from B. thuringiensis HBF-18. Recombinant B. thuringiensis strain HD8G, harboring cry8Ga1, has insecticidal activity against larvae of Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. This is the first report of a Cry toxin that has insecticidal activity to Melolonthidae pest H. oblita.  相似文献   

11.
Bacillus thuringiensis BR145 isolated from a soybean field in Southern Brazil showed toxicity against two important insect pests from soybean crop, Helicoverpa armigera, and Chrysodeixis includens, with LC50 0.294 µg.cm-2 and 0.277 µg.cm-2, respectively. We analyzed the genome of this strain through sequences obtained by Next Generation DNA Sequencing and de novo assembly. The analysis of the genome revealed insecticidal genes cry1Aa, cry1Ab, cry1Ac, cry1Ia, cry2Ab, cyt1, and vip3Aa, suggesting the use of this strain in new strategies of biological control.  相似文献   

12.
Bacillus thuringiensis (Bt) has played an important role in biocontrol of pests. However, insecticidal activity of B. thuringiensis against locusts has been rarely reported. Bt strain BTH-13 exhibiting specific activity to locusts was isolated from a soil sample in China and characterized. Its bipyramidal parasporal crystal is mainly composed of a protein of 129 kDa, and produces a mature toxin of 64 kDa after activation. The pattern of total DNA from BTH-13 showed a large and three small plasmid bands. Known δ-endotoxin genes, cry1Aa, cry1Ab, cry1Ac, cry1C, cry3, cry4 and cry7Aa were not found from strain BTH-13 by PCR amplification. The sequence analysis of a DNA fragment produced by PCR amplification with degenerate cry-selective primers revealed that the fragment encoded a δ-endotoxin segment, which exhibited some similarity to several Cry proteins (41% of the highest similarity to Cry7Ba1). Toxicity tests were performed against Locusta migratoria manilensis, and the results demonstrated that trypsin-treated sporulated cultures and crystal proteins had high toxicity to larval and adult locusts. Cry toxin of BTH-13 was detected on the midguts of treated locusts using immunofluorescent technology, which confirmed the site of action of the crystal proteins in their toxicity for locusts.  相似文献   

13.
The main problems with Bacillus thuringiensis products for pest control are their often narrow activity spectrum, high sensitivity to UV degradation, and low cost effectiveness (high potency required). We constructed a sporulation-deficient SigK(-) B. thuringiensis strain that expressed a chimeric cry1C/Ab gene, the product of which had high activity against various lepidopteran pests, including Spodoptera littoralis (Egyptian cotton leaf worm) and Spodoptera exigua (lesser [beet] armyworm), which are not readily controlled by other Cry delta-endotoxins. The SigK(-) host strain carried the cry1Ac gene, the product of which is highly active against the larvae of the major pests Ostrinia nubilalis (European corn borer) and Heliothis virescens (tobacco budworm). This new strain had greater potency and a broader activity spectrum than the parent strain. The crystals produced by the asporogenic strain remained encapsulated within the cells, which protected them from UV degradation. The cry1C/Ab gene was introduced into the B. thuringiensis host via a site-specific recombination vector so that unwanted DNA was eliminated. Therefore, the final construct contained no sequences of non-B. thuringiensis origin. As the recombinant strain is a mutant blocked at late sporulation, it does not produce viable spores and therefore cannot compete with wild-type B. thuringiensis strains in the environment. It is thus a very safe biopesticide. In field trials, this new recombinant strain protected cabbage and broccoli against a pest complex under natural infestation conditions.  相似文献   

14.
A new cry1Ab gene was cloned from the promising local isolate, DOR Bt-1, a Bacillus thuringiensis strain isolated from castor semilooper (Achaea janata L.) cadavers from castor bean (Ricinus communis L.) field. The nucleotide sequence of the cloned cry1Ab gene indicated that the open reading frame consisted of 3,465 bases encoding a protein of 1,155 amino acid residues with an estimated molecular weight of 130 kDa. Homology comparisons revealed that the deduced amino acid sequence of cry1Ab had a variation of seven amino acid residues compared to those of the known Cry1Ab proteins in the NCBI database and this gene has been designated as cry1Ab26 by the B. thuringiensis δ-endotoxin Nomenclature Committee. cry1Ab26 was cloned into pET 29a(+) vector and expressed in E. coli strain BL21 (DE3) under the control of T7 promoter with IPTG induction. ELISA, SDS-PAGE, and Western blot analysis confirmed the expression of 130-kDa protein. Insect bioassays with neonate larvae of Helicoverpa armigera showed that the partially purified Cry1Ab26 caused 97 % mortality within 5 days of feeding.  相似文献   

15.
A newly-synthesized cry2Ab gene was characterized in Nicotiana tabacum, before its further transformation in cotton. Synthetic cry2Ab gene was cloned in pGreen0029 and its expression was transiently analyzed at mRNA level through agroinfiltration in tobacco. The mRNA of cry2Ab was detected after 72 h agroinfiltration through PCR using total plant RNA. This construct was then transformed into N. tabacum through Agrobacterium. Insect bioassays were conducted on detached leaves using first instar Spodoptera exigua larvae; after 96 h significant insect mortality was recorded. This newly synthesized gene was effective in controlling S. exigua first instar larvae. It can be used in combinations with other Bt genes like cry1Ac for developing resistance against major insect pests of cotton and further widening the insect control spectrum.  相似文献   

16.
Previous studies revealed that chitinase could enhance the insecticidal activity of Bacillus thuringiensis and it has been used in combination with B. thuringiensis widely. However, the expression of B. thuringiensis chitinase is rather low and needs induction by chitin, which limits its field application. It would make sense to constitutively express the chitinase at a sufficiently high level to offer advantages in biological control of pests. In this study, a signal peptide-encoding sequence-deleted chitinase gene from B. thuringiensis strain 4.0718 under the control of dual overlapping promoters plus Shine–Dalgarno sequence and terminator sequence of cry1Ac3 gene was cloned into shuttle vector pHT315 and introduced into an acrystalliferous B. thuringiensis strain CryB. The recombinant plasmid was stably maintained over 240 generations in CryB. Chitinase was overexpressed within the sporangial mother cells in the form of spherical crystal-like inclusion bodies. The chitinase inclusions could be solubilized and exhibit chitinolytic activity in 30 mmol l−1 Na2CO3–0.2% β-mercaptoethanol buffer at a wide range of alkaline pH values, and what’s more, the chitinase inclusions potentiated the insecticidal effect of Cry1Ac protoxin when used against larvae of Spodoptera exigua and Helicoverpa armigera.  相似文献   

17.
Brazilian strains of Bacillus thuringiensis, namely S701, S764 and S1265 were analysed regarding their cry gene and protein contents, crystal type, and activity against larvae of the lepidopteran fall armyworm (Spodoptera frugiperda Smith), the velvet caterpillar (Anticarsia gemmatalis), the dipterans (Culex quinquefasciatus and Aedes aegypti) and the coleopteran (Tenebrio molitor). The LC50 of the strains against second instar larvae of S. frugiperda or A. gemmatalis revealed a high potency against those insect species. The spore–crystal mixtures of the isolates were analysed by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and showed similar protein pattern as the B. thuringiensis subsp. kurstaki strain HD‐1 (proteins approximately 130 and 65 kDa) for isolates S701 and S764, respectively, and only one major protein of approximately 130 kDa for isolate S1265. The polymerase chain reaction (PCR) using total DNA of the isolates and general and specific primers showed the presence of cry1Aa, cry1Ac, cry1Ia and cry2Ab genes in the two isolates serotyped as B. thuringiensis kurstaki (S701 and S764) and the presence of cry1D and cry2Ad in B. thuringiensis morrisoni S1265 strain. Scanning electron microscopy of strains S701 and S764, showed the presence of bipyramidal, cuboidal and round crystals, like in strain HD‐1 and bipyramidal and round crystals like in strain S1265.  相似文献   

18.
A recombinant plasmid pSTK-3A containing cry3Aa7 gene encoding a coleopteran-specific insecticidal protein was constructed and introduced into wild Bacillus thuringiensis subsp. aizawai G03, which contained cry1Aa, cry1Ac, cry1Ca, and cry2Ab genes and was highly toxic to lepidopteran insect pests. The genetically engineered strain were named G033A. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis demonstrated that the cry3Aa7 gene was expressed normally and produced a 67 kDa protein in G033A, and the flat rectangular crystals of Cry3Aa7 toxin protein was observed under scanning electron microscope. The recombinant plasmid was maintained in bacteria cultured for 180 generations in culture media containing no antibiotics. Synthesis of the Cry3Aa7 toxin conferred high and broad toxicity to the recombinant strain G033A against coleopteran order, elm leaf beetle (Pyrrhalta aenescens) (LC50 0.35 mg/ml), for which the parental strain G03 was not toxic. Both the parental strain G03 and recombinant strain G033A showed strong insecticidal activity to lepidopteran pests, beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella), and cotton bollworm (Helicoverpa amigera), respectively. The lethal concentration 50% (LC50) of G033A against S. exigua, P. xylostella, and H. amigera was 4.26, 0.86, and 1.76 μg/ml, respectively.  相似文献   

19.
The aim of this study was to characterize new Bacillus thuringiensis strains that have a potent insecticidal activity against Ephestia kuehniella larvae. Strains harboring cry1A genes were tested for their toxicity, and the Lip strain showed a higher insecticidal activity compared to that of the reference strain HD1 (LC50 of Lip and HD1 were 33.27 and 128.61 μg toxin/g semolina, respectively). B. thuringiensis Lip harbors and expresses cry1Aa, cry1Ab, cry1Ac, cry1Ad and cry2A. DNA sequencing revealed several polymorphisms in Lip Cry1Aa and Cry1Ac compared to the corresponding proteins of HD1. The activation process using Ephestia kuehniella midgut juice showed that Lip Cry1A proteins were more stable in the presence of larval proteases. Moreover, LipCry1A proteins exhibited higher insecticidal activity against these larvae. These results indicate that Lip is an interesting strain that could be used as an alternative to the worldwide used strain HD1.  相似文献   

20.
A strain of Bacillus thuringiensis with dual toxicity was isolated from Korean soil samples and named K2. K2 was determined as ssp. kurstaki (H3a3b3c) by serological test and produced bipyramidal-shaped parasporal inclusions. The plasmid and protein profiles of B. thuringiensis K2 were different from those of the reference strain, ssp. kurstaki HD-1. To verify gene type of B. thuringiensis K2, PCR analysis with specific cry gene primers was performed. The result showed that B. thuringiensis K2 had cry1Aa, cry1Ab, cry1C, and cry1D type genes, whereas ssp. kurstaki HD-1 had cry1Aa, cry1Ab, cry1Ac, and cry2 type genes. In addition, B. thuringiensis K2 had high toxicity against Spodoptera exigua and Culex pipiens, whereas B. thuringiensis ssp. kurstaki HD-1 does not have high toxicity against these two insect species. Received: 19 January 2001 / Accepted: 21 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号