首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.  相似文献   

2.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   

3.
Seasonal and management influences on the fungal community structure of two upland grassland soils were investigated. An upland site containing both unimproved floristically diverse (U4a) and improved mesotrophic (MG7b) grassland types was selected. Samples from both grassland types were taken at five times in one year. Soil fungal community structure was assessed using fungal automated ribosomal intergenic spacer analysis (ARISA), a DNA-profiling approach. A grassland management regime was found to strongly affect fungal community structure, with fungal ARISA profiles from unimproved and improved grassland soils differing significantly. The number of fungal ribotypes found was higher in unimproved than improved grassland soils, providing evidence that improvement may reduce the suitability of upland soil as a habitat for specific groups of fungi. Seasonal influences on fungal community structure were also noted, with samples taken in autumn (October) more correlated with change in ribotype profiles than samples from other seasons. However, seasonal variation did not obscure the measurement of differences in the fungal community structure that were due to agricultural improvement, with canonical correspondence analysis indicating grassland type had a stronger influence on fungal profiles than did season.  相似文献   

4.
Climate and parent material strongly control vegetation structure and function, yet their control over the belowground microbial community is poorly understood. We assessed variation in microbial lipid profiles in undisturbed forest soils (organic and surface mineral horizons) along an altitudinal gradient (700, 1,700, and 2,700 m a.s.l. mean annual temperature of 12–24°C) on two contrasting parent materials (acidic metasedimentary vs. ultrabasic igneous rock) in Mt. Kinabalu, Borneo. Soil organic carbon and nitrogen concentrations were generally higher at higher altitudes and, within a site, at upper soil horizons. Soil pH ranged from 3.9 to 5.3, with higher values for the ultrabasic soils especially at higher altitudes. The major shifts in microbial community structure observed were the decline in the ratio of fungal to bacterial lipid markers both with increasing soil depth and decreasing altitude. The positive correlation between this ratio with soil C and N concentrations suggested a strong substrate control in accord with the literature from mid to high-latitude ecosystems. Principal component analysis using seven groups of signature lipids suggested a significant altitude by parent material interaction—the significant difference in microbial community structure between the two rock types found at 2,700-m sites developed on weakly weathered soils diminished with decreasing altitude towards 700-m sites where soils were strongly weathered. These results are consistent with the hypothesis that parent material effect on soil microbial community (either directly via soil geochemistry or indirectly via floristic composition) is stronger at an earlier stage of ecosystem development.  相似文献   

5.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

6.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

7.
Woody species encroachment of grasslands globally causes many socioecological impacts, including loss of grazing pastures and decreased biodiversity. Soil microbial communities may partially regulate the pace of shrub encroachment, as plant-microbial interactions can strongly influence plant success. We measured fungal composition and activity under dominant plant species across a grassland to shrubland transition to determine if shrubs cultivate soil microbial communities as they invade. Specifically, soil microbial communities, abiotic soil properties, and extracellular enzyme activities were quantified for soils under four common Chihuahuan Desert plant species (three grasses, one shrub) in central New Mexico, U.S.A. Extracellular enzyme activity levels were fairly consistent under different plant species across the grassland to shrubland transition. Activity levels of two enzymes (alkaline phosphatase and beta-N-acetyl-glucosaminidase) were lower in the ecotone, presumably because soil organic matter content was also lower in ecotone soils. Community composition of soil fungi mirrored patterns in the plant community, with distinct plant and fungal communities in the shrubland and grassland, while grassland-shrubland ecotone soils hosted a mix of taxa from both habitats. We show that shrubs cultivate a distinct microbial community on the leading edge of the invasion, which may be necessary for shrub colonization, establishment, and persistence.  相似文献   

8.
Waldrop MP  Firestone MK 《Oecologia》2004,138(2):275-284
Little is known about how the structure of microbial communities impacts carbon cycling or how soil microbial community composition mediates plant effects on C-decomposition processes. We examined the degradation of four 13C-labeled compounds (starch, xylose, vanillin, and pine litter), quantified rates of associated enzyme activities, and identified microbial groups utilizing the 13C-labeled substrates in soils under oaks and in adjacent open grasslands. By quantifying increases in non-13C-labeled carbon in microbial biomarkers, we were also able to identify functional groups responsible for the metabolism of indigenous soil organic matter. Although microbial community composition differed between oak and grassland soils, the microbial groups responsible for starch, xylose, and vanillin degradation, as defined by 13C-PLFA, did not differ significantly between oak and grassland soils. Microbial groups responsible for pine litter and SOM-C degradation did differ between the two soils. Enhanced degradation of SOM resulting from substrate addition (priming) was greater in grassland soils, particularly in response to pine litter addition; under these conditions, fungal and Gram + biomarkers showed more incorporation of SOM-C than did Gram – biomarkers. In contrast, the oak soil microbial community primarily incorporated C from the added substrates. More 13C (from both simple and recalcitrant sources) was incorporated into the Gram – biomarkers than Gram + biomarkers despite the fact that the Gram + group generally comprised a greater portion of the bacterial biomass than did markers for the Gram – group. These experiments begin to identify components of the soil microbial community responsible for decomposition of different types of C-substrates. The results demonstrate that the presence of distinctly different plant communities did not alter the microbial community profile responsible for decomposition of relatively labile C-substrates but did alter the profiles of microbial communities responsible for decomposition of the more recalcitrant substrates, pine litter and indigenous soil organic matter.  相似文献   

9.
围封对植被处于近自然恢复状态的退化草地有一定的修复作用,开展轻度退化草地围封过程中生物与非生物因素的协同互作研究是完整地认识草地生态系统结构和功能的基础.本试验对围栏封育10年的轻度退化草地的土壤化学计量特征进行了研究,同时采用高通量基因测序技术并结合Biolog-Eco方法,调查了土壤微生物多样性和功能的变化.结果表明:轻度退化草地实施围封后,土壤铵态氮含量显著升高,全钾含量显著降低,土壤有机碳、全氮、全磷、硝态氮、速效磷和速效钾则无明显变化.高寒草甸土壤微生物碳和氮在轻度退化和围栏封育草地间差异不显著;围栏封育后草地土壤微生物碳氮比显著高于轻度退化草地.随培养时间的延长,高寒草甸不同土层土壤微生物碳代谢强度均显著升高,土壤微生物碳代谢指数在轻度退化和围栏封育草地间差异不显著.高寒草甸土壤细菌OTUs显著高于真菌,轻度退化与围栏封育草地土壤微生物相似度为27.0%~32.7%.围封后,土壤真菌子囊菌门、接合菌门和球壶菌门相对丰富度显著升高,担子菌门显著降低,土壤细菌酸杆菌门显著低于轻度退化草地.土壤真菌和细菌群落组成在不同土层间差异较大,在轻度退化和围栏封育草地间仅有表层土壤真菌群落组成表现出较大差异.土壤细菌多样性受土壤全氮和速效钾影响较大,真菌多样性受地上生物量影响较大.土壤微生物对碳源利用能力主要受土壤速效钾影响.综上,长期围封禁牧对轻度退化草地土壤养分和土壤微生物无明显影响,且会造成牧草资源浪费,适度放牧可以保持草地资源的可持续利用.  相似文献   

10.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

11.
Frank DA  Gehring CA  Machut L  Phillips M 《Oecologia》2003,137(4):603-609
The effect of the community composition of soil microbes on ecosystem processes has received relatively little attention. Here we examined the variation in soil microbial composition in a Yellowstone National Park grassland and the effect of that variation on the growth, in a greenhouse, of the dominant grass in the community. Plants and their rhizospheric soil were collected from paired, Poa pratensis-dominated grassland plots located inside and outside a 40-year-old exclosure. P. pratensis aboveground, belowground, and whole plant growth were greater in pots with soil communities from grazed grassland compared to fenced grassland, indicating (1) soil microbial communities differed, and (2) this difference influenced the growth of the plant that dominated both grasslands. Treating pots with fungicide (benomyl) suppressed the soil community influence, indicating that different fungal communities caused the soil microbe effect. In addition, two lines of evidence are consistent with the hypothesis that arbuscular mycorrhizal fungal (AMF) species composition affected P. pratensis: (1) a divergence in AMF spore communities in the two field soils, and (2) little evidence of pathogenic fungi. These findings emphasize the need to examine the role that the composition of the soil microbial community plays in controlling terrestrial ecosystems.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

12.
Alterations in soil bacterial communities across a transect between a semi natural upland grassland and an agriculturally improved enclosure were assessed using culture-based methods and a nucleic-acid-based method, terminal restriction fragment length polymorphism (TRFLP). While plant diversity decreased across the transect towards the improved area, numbers of 16S rDNA terminal restriction fragments increased, indicating an increase in numbers of bacterial ribotypes. Bacterial numbers, microbial activity, and potential functional diversity also followed a similar trend, increasing with decreasing plant diversity. Alterations in bacterial community structure were coincident with changes in soil physicochemical properties which also changed across the transect. Increases in soil pH, nitrate, phosphorus, potassium, and calcium occurred toward the improved grassland, while organic matter and ammonium declined. The inverse relationship between floristic diversity and bacterial ribotype numbers suggests that soil physicochemical factors may be as influential in determining bacterial diversity in soils of upland grassland communities as floristic diversity.  相似文献   

13.
Short‐rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly altered both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N2O emissions previously reported following conversion at these sites. The legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.  相似文献   

14.
Poplar trees (Populus spp.) are often used in bioremediation strategies because of their ability to phytoextract potential toxic ions, e.g., selenium (Se) from poor quality soils. Soil microorganisms may play a vital role in sustaining health of soil and/or tolerance of these trees grown in poor quality soils by contributing to nutrient cycling, soil structure, overall soil quality, and plant survival. The effect of naturally occurring salts boron (B) and Se on soil microbial community composition associated with poplar trees is not known for bioremediation strategies. In this study, three Populus clones 13–366, 345–1, and 347–14 were grown in spring 2006 under highly saline, B, and Se clay-like soils in the west side of the San Joaquin Valley (SJV) of CA, as well as in non-saline sandy loam soils located in the east side of the SJV. After 7 years of growing in the respective soils of different qualities, soil samples were collected from poplar clones grown in saline and non-saline soils to examine and compare soil quality effects on soil microbial community biomass and composition. The phospholipid fatty acid (PLFA) analysis was used to characterize microbial community composition in soils from trees grown at both locations. This study showed that microbial biomass and the amount and proportion of arbuscular mycorrhizal fungal (AMF) community were lower in all three poplar clones grown in saline soil compared to non-saline soil. Amounts of Gram + bacterial and actinomycetes PLFAs were significantly lower in poplar clone 13–366 grown in saline soil compared to non-saline soil; however, they did not differ significantly in poplar clones 347–14 and 345–1. Additionally, amounts of saprophytic fungal, Gram ? bacterial and eukaryotic PLFA remained similar at saline and non-saline sites under poplar clones 347–14, 345–1, and 13–366. Therefore, this study suggested that salinity and B do have an impact on microbial biomass and AMF; however, these poplar clones still recycled sufficient amount of nutrients to support and protect saprophytic fungal and bacterial communities from the effects of poor quality soils.  相似文献   

15.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

16.
Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical.  相似文献   

17.
Little information exists on the responses of soil fungal and bacterial communities in high elevation coniferous forest/open meadow ecosystems of the northwest United States of America to treatments that impact vegetation and soil conditions. An experiment was conducted in which soil cores were reciprocally transplanted between immediately adjacent forests and meadows at two high elevation (∼1,600 m) sites (Carpenter and Lookout) in the H.J. Andrews Experimental Forest located in the Cascade Mountains of Oregon. Half of the cores were placed in PVC pipe (closed) to prevent new root colonization, whereas the other cores were placed in mesh bags (open) to allow recolonization by fine roots. A duplicate set of open and closed soil cores was not transferred between sites and was incubated in place. After 2 year, soil cores were removed and changes in fungal and bacterial biomasses determined using light microscopy, and changes in microbial community composition determined by PLFA analysis, and by length heterogeneity PCR of the internal transcribed spacer region of fungal ribosomal DNA. At both sites soil microbial community structures had responded to treatments after 2 year of incubation. At Carpenter, both fungal and bacterial community structures of forest soil changed significantly in response to transfer from forest to meadow, with the shift in fungal community structure being accompanied by a significant decrease in the PLFA biomarker of fungal biomass,18:2ω6,9. At Lookout, both fungal and bacterial community structures of forest soil changed significantly in response to open versus closed core treatments, with the shift in the fungal community being accompanied by a significant decrease in the 18:2ω6,9 content of closed cores, and the shift in the bacterial community structure being accompanied by a significant increase in bacterial biomass of closed cores. At both sites, fungal community structures of meadow soils changed differently between open and closed cores in response to transfer to forest, and were accompanied by increases in the18:2ω6,9 content of open cores. Although there were no significant treatment effects on the bacterial community structure of meadow soil at either site, bacterial biomass was significantly higher in closed versus open cores regardless of transfer.  相似文献   

18.
Floristically diverse Nardo-Galion upland grasslands are common in Ireland and the UK and are valuable in agricultural, environmental and ecological terms. Under improvement (inputs of lime, fertiliser and re-seeding), they convert to mesotrophic grassland containing very few plant species. The effects of upland grassland improvement and seasonality on soil microbial communities were investigated at an upland site. Samples were taken at five times in one year in order to observe seasonal trends, and bacterial community structure was monitored using automated ribosomal intergenic spacer analysis (ARISA), a DNA-fingerprinting approach. Differences in soil chemistry and bacterial community structure between unimproved and improved grassland soils were noted. Season was also found to cause mild fluctuations in bacterial community structure, with soil samples from colder months (October and December) more correlated with change in ribotype profiles than samples from warmer months. However, for the majority of seasons clear differences in bacterial community structures from unimproved and improved soils could be seen, indicating seasonal influences did not obscure effects associated with improvement.  相似文献   

19.
Microbiological evaluation of sandy grassland soils from two different stages of secondary succession on abandoned fields (4 and 8 years old fallow) was carried out as a part of research focused on restoration of semi-natural vegetation communities inKiskunság National Park in Hungary. There was an apparent total N and organic C enrichment, stimulation of microbial growth and microbial community structure change on fields abandoned by agricultural practice (small family farm) in comparison with native undisturbed grassland. A successional trend of the microbial community was found after 4 and 8 years of fallow-lying soil. It consisted in a shift of r-survival strategy to more efficient C economy, in a decrease of specific respiration and metabolic activity, forced accumulation of storage bacterial compounds and increased fungal distribution. The composition of microbial phospholipid fatty acids mixture of soils abandoned at various times was significantly different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号