首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer’s dilemma game. Numerical experiments validate the above analytical results.  相似文献   

2.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

3.
It is one of the fundamental problems in biology and social sciences how to maintain high levels of cooperation among selfish individuals. Theorists present an effective mechanism promoting cooperation by allowing for voluntary participation in public goods games. But Nash's theory predicts that no one can do better or worse than loners (players unwilling to join the public goods game) in the long run, and that the frequency of participants is independent of loners’ payoff. In this paper, we introduce a degree of rationality and investigate the model by means of an approximate best response dynamics. Our research shows that the payoffs of the loners have a significant effect in anonymous voluntary public goods games by this introduction and that the dynamics will drive the system to a fixed point, which is different from the Nash equilibrium. In addition, we also qualitatively explain the existing experimental results.  相似文献   

4.
It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer''s dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a “strong” player is greater than the “weak” players in the model of Diekmann (1993). This contradicts Selten''s (1980) model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.  相似文献   

5.
Public goods games paraphrase the problem of cooperation in game theoretical terms. Cooperators contribute to a public good and thereby increase the welfare of others at a cost to themselves. Defectors consume the public good but do not pay its cost and therefore outperform cooperators. Hence, according to genetic or cultural evolution, defectors should be favored and the public good disappear – despite the fact that groups of cooperators are better off than groups of defectors. The maximization of short term individual profits causes the demise of the common resource to the detriment of all. This outcome can be averted by introducing incentives to cooperate. Negative incentives based on the punishment of defectors efficiently stabilize cooperation once established but cannot initiate cooperation. Here we consider the complementary case of positive incentives created by allowing individuals to reward those that contribute to the public good. The finite-population stochastic dynamics of the public goods game with reward demonstrate that reward initiates cooperation by providing an escape hatch out of states of mutual defection. However, in contrast to punishment, reward is unable to stabilize cooperation but, instead, gives rise to a persistent minority of cooperators.  相似文献   

6.
In spatial evolutionary games the fitness of each individual is traditionally determined by the payoffs it obtains upon playing the game with its neighbors. Since defection yields the highest individual benefits, the outlook for cooperators is gloomy. While network reciprocity promotes collaborative efforts, chances of averting the impending social decline are slim if the temptation to defect is strong. It is, therefore, of interest to identify viable mechanisms that provide additional support for the evolution of cooperation. Inspired by the fact that the environment may be just as important as inheritance for individual development, we introduce a simple switch that allows a player to either keep its original payoff or use the average payoff of all its neighbors. Depending on which payoff is higher, the influence of either option can be tuned by means of a single parameter. We show that, in general, taking into account the environment promotes cooperation. Yet coveting the fitness of one's neighbors too strongly is not optimal. In fact, cooperation thrives best only if the influence of payoffs obtained in the traditional way is equal to that of the average payoff of the neighborhood. We present results for the prisoner's dilemma and the snowdrift game, for different levels of uncertainty governing the strategy adoption process, and for different neighborhood sizes. Our approach outlines a viable route to increased levels of cooperative behavior in structured populations, but one that requires a thoughtful implementation.  相似文献   

7.
Brown SP  Taddei F 《PloS one》2007,2(7):e593
An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-offs) of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas involving durable public goods (group resources that can persist in the environment-ubiquitous from microbes to humans) this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner's Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games), while changes in durability can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits, at least not in the present moment (as highlighted by concerns over environmental lags). Wherever durable public goods have yet to reach a steady state (for instance due to external perturbations), the history of cooperation will define the ongoing dynamics of cooperators.  相似文献   

8.
Smaldino PE  Lubell M 《PloS one》2011,6(8):e23019
Recent research has revived Long's "ecology of games" model to analyze how social actors cooperate in the context of multiple political and social games. However, there is still a paucity of theoretical work that considers the mechanisms by which large-scale cooperation can be promoted in a dynamic institutional landscape, in which actors can join new games and leave old ones. This paper develops an agent-based model of an ecology of games where agents participate in multiple public goods games. In addition to contribution decisions, the agents can leave and join different games, and these processes are de-coupled. We show that the payoff for cooperation is greater than for defection when limits to the number of actors per game ("capacity constraints") structure the population in ways that allow cooperators to cluster, independent of any complex individual-level mechanisms such as reputation or punishment. Our model suggests that capacity constraints are one effective mechanism for producing positive assortment and increasing cooperation in an ecology of games. The results suggest an important trade-off between the inclusiveness of policy processes and cooperation: Fully inclusive policy processes reduce the chances of cooperation.  相似文献   

9.
Evolution of reactive strategy of indirect reciprocity is discussed, where individuals interact with others through the one-shot Prisoner's Dilemma game, changing their partners in every round. We investigate all of the reactive strategies that are stochastic, including deterministic ones as special cases. First we study adaptive dynamics of reactive strategies by assuming monomorphic population. Results are very similar to the corresponding evolutionary dynamics of direct reciprocity. The discriminating strategy, which prescribes cooperation only with those who cooperated in the previous round, cannot be an outcome of the evolution. Next we examine the case where the population includes a diversity of strategies. We find that only the mean 'discriminatoriness' in the population is the parameter that affects the evolutionary dynamics. The discriminating strategy works as a promoter of cooperation there. However, it is again not the end point of the evolution. This is because retaliatory defection, which was prescribed by the discriminating strategy, is regarded as another defection toward the society. These results caution that we have to reconsider the role of retaliatory defection much more carefully.  相似文献   

10.
Transforming the dilemma   总被引:1,自引:0,他引:1  
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations.  相似文献   

11.
Studies of cooperation have traditionally focused on discrete games such as the well-known prisoner’s dilemma, in which players choose between two pure strategies: cooperation and defection. Increasingly, however, cooperation is being studied in continuous games that feature a continuum of strategies determining the level of cooperative investment. For the continuous snowdrift game, it has been shown that a gradually evolving monomorphic population may undergo evolutionary branching, resulting in the emergence of a defector strategy that coexists with a cooperator strategy. This phenomenon has been dubbed the ‘tragedy of the commune’. Here we study the effects of fluctuating group size on the tragedy of the commune and derive analytical conditions for evolutionary branching. Our results show that the effects of fluctuating group size on evolutionary dynamics critically depend on the structure of payoff functions. For games with additively separable benefits and costs, fluctuations in group size make evolutionary branching less likely, and sufficiently large fluctuations in group size can always turn an evolutionary branching point into a locally evolutionarily stable strategy. For games with multiplicatively separable benefits and costs, fluctuations in group size can either prevent or induce the tragedy of the commune. For games with general interactions between benefits and costs, we derive a general classification scheme based on second derivatives of the payoff function, to elucidate when fluctuations in group size help or hinder cooperation.  相似文献   

12.
Traveler''s dilemma (TD) is one of social dilemmas which has been well studied in the economics community, but it is attracted little attention in the physics community. The TD game is a two-person game. Each player can select an integer value between and () as a pure strategy. If both of them select the same value, the payoff to them will be that value. If the players select different values, say and (), then the payoff to the player who chooses the small value will be and the payoff to the other player will be . We term the player who selects a large value as the cooperator, and the one who chooses a small value as the defector. The reason is that if both of them select large values, it will result in a large total payoff. The Nash equilibrium of the TD game is to choose the smallest value . However, in previous behavioral studies, players in TD game typically select values that are much larger than , and the average selected value exhibits an inverse relationship with . To explain such anomalous behavior, in this paper, we study the evolution of cooperation in spatial traveler''s dilemma game where the players are located on a square lattice and each player plays TD games with his neighbors. Players in our model can adopt their neighbors'' strategies following two standard models of spatial game dynamics. Monte-Carlo simulation is applied to our model, and the results show that the cooperation level of the system, which is proportional to the average value of the strategies, decreases with increasing until is greater than the critical value where cooperation vanishes. Our findings indicate that spatial reciprocity promotes the evolution of cooperation in TD game and the spatial TD game model can interpret the anomalous behavior observed in previous behavioral experiments.  相似文献   

13.
People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner’s dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious “dominant” strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals’ strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players’ choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.  相似文献   

14.
Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen's inequality, I show that the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with discounting or synergy and the N-person volunteer's dilemma) and three different group-size distributions (Poisson, geometric, and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation of the actual level of cooperation exhibited in evolving populations.  相似文献   

15.
Not only animals, plants and microbes but also humans cooperate in groups. The evolution of cooperation in a group is an evolutionary puzzle, because defectors always obtain a higher benefit than cooperators. When people participate in a group, they evaluate group member’s reputations and then decide whether to participate in it. In some groups, membership is open to all who are willing to participate in the group. In other groups, a candidate is excluded from membership if group members regard the candidate’s reputation as bad. We developed an evolutionary game model and investigated how participation in groups and ostracism influence the evolution of cooperation in groups when group members play the voluntary public goods game, by means of computer simulation. When group membership is open to all candidates and those candidates can decide whether to participate in a group, cooperation cannot be sustainable. However, cooperation is sustainable when a candidate cannot be a member unless all group members admit them to membership. Therefore, it is not participation in a group but rather ostracism, which functions as costless punishment on defectors, that is essential to sustain cooperation in the voluntary public goods game.  相似文献   

16.
Zhong W  Kokubo S  Tanimoto J 《Bio Systems》2012,107(2):88-94
Cooperation in the prisoner's dilemma (PD) played on various networks has been explained by so-called network reciprocity. Most of the previous studies presumed that players can offer either cooperation (C) or defection (D). This discrete strategy seems unrealistic in the real world, since actual provisions might not be discrete, but rather continuous. This paper studies the differences between continuous and discrete strategies in two aspects under the condition that the payoff function of the former is a linear interpolation of the payoff matrix of the latter. The first part of this paper proves theoretically that for two-player games, continuous and discrete strategies have different equilibria and game dynamics in a well-mixed but finite population. The second part, conducting a series of numerical experiments, reveals that such differences become considerably large in the case of PD games on networks. Furthermore, it shows, using the Wilcoxon sign-rank test, that continuous and discrete strategy games are statistically significantly different in terms of equilibria. Intensive discussion by comparing these two kinds of games elucidates that describing a strategy as a real number blunts D strategy invasion to C clusters on a network in the early stage of evolution. Thus, network reciprocity is enhanced by the continuous strategy.  相似文献   

17.
Voluntary participation in public goods games (PGGs) has turned out to be a simple but effective mechanism for promoting cooperation under full anonymity. Voluntary participation allows individuals to adopt a risk-aversion strategy, termed loner. A loner refuses to participate in unpromising public enterprises and instead relies on a small but fixed pay-off. This system leads to a cyclic dominance of three pure strategies, cooperators, defectors and loners, but at the same time, there remain two considerable restrictions: the addition of loners cannot stabilize the dynamics and the time average pay-off for each strategy remains equal to the pay-off of loners. Here, we introduce probabilistic participation in PGGs from the standpoint of diversification of risk, namely simple mixed strategies with loners, and prove the existence of a dynamical regime in which the restrictions ono longer hold. Considering two kinds of mixed strategies associated with participants (cooperators or defectors) and non-participants (loners), we can recover all basic evolutionary dynamics of the two strategies: dominance; coexistence; bistability; and neutrality, as special cases depending on pairs of probabilities. Of special interest is that the expected pay-off of each mixed strategy exceeds the pay-off of loners at some interior equilibrium in the coexistence region.  相似文献   

18.
The commonly used accumulated payoff scheme is not invariant with respect to shifts of payoff values when applied locally in degree-inhomogeneous population structures. We propose a suitably modified payoff scheme and we show both formally and by numerical simulation, that it leaves the replicator dynamics invariant with respect to affine transformations of the game payoff matrix. We then show empirically that, using the modified payoff scheme, an interesting amount of cooperation can be reached in three paradigmatic non-cooperative two-person games in populations that are structured according to graphs that have a marked degree inhomogeneity, similar to actual graphs found in society. The three games are the Prisoner’s Dilemma, the Hawks-Doves and the Stag-Hunt. This confirms previous important observations that, under certain conditions, cooperation may emerge in such network-structured populations, even though standard replicator dynamics for mixing populations prescribes equilibria in which cooperation is totally absent in the Prisoner’s Dilemma, and it is less widespread in the other two games.  相似文献   

19.
Direct reciprocity is a mechanism for the evolution of cooperation. For the iterated prisoner’s dilemma, a new class of strategies has recently been described, the so-called zero-determinant strategies. Using such a strategy, a player can unilaterally enforce a linear relationship between his own payoff and the co-player’s payoff. In particular the player may act in such a way that it becomes optimal for the co-player to cooperate unconditionally. In this way, a player can manipulate and extort his co-player, thereby ensuring that the own payoff never falls below the co-player’s payoff. However, using a compliant strategy instead, a player can also ensure that his own payoff never exceeds the co-player’s payoff. Here, we use adaptive dynamics to study when evolution leads to extortion and when it leads to compliance. We find a remarkable cyclic dynamics: in sufficiently large populations, extortioners play a transient role, helping the population to move from selfish strategies to compliance. Compliant strategies, however, can be subverted by altruists, which in turn give rise to selfish strategies. Whether cooperative strategies are favored in the long run critically depends on the size of the population; we show that cooperation is most abundant in large populations, in which case average payoffs approach the social optimum. Our results are not restricted to the case of the prisoners dilemma, but can be extended to other social dilemmas, such as the snowdrift game. Iterated social dilemmas in large populations do not lead to the evolution of strategies that aim to dominate their co-player. Instead, generosity succeeds.  相似文献   

20.
Explaining unconditional cooperation, such as donations to charities or contributions to public goods, continues to present a problem. One possibility is that cooperation can pay through developing a reputation that makes one more likely to be chosen for a profitable cooperative partnership, a process termed competitive altruism (CA) or reputation-based partner choice. Here, we show, to our knowledge, for the first time, that investing in a cooperative reputation can bring net benefits through access to more cooperative partners. Participants played a public goods game (PGG) followed by an opportunity to select a partner for a second cooperative game. We found that those who gave more in the PGG were more often selected as desired partners and received more in the paired cooperative game. Reputational competition was even stronger when it was possible for participants to receive a higher payoff from partner choice. The benefits of being selected by a more cooperative partner outweighed the costs of cooperation in the reputation building phase. CA therefore provides an alternative to indirect reciprocity as an explanation for reputation-building behaviour. Furthermore, while indirect reciprocity depends upon individuals giving preference to those of good standing, CA can explain unconditional cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号