首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
J M Burke 《Gene》1988,73(2):273-294
In vivo and in vitro genetic techniques have been widely used to investigate the structure-function relationships and requirements for splicing of group-I introns. Analyses of group-I introns from extremely diverse genetic systems, including fungal mitochondria, protozoan nuclei, and bacteriophages, have yielded results which are complementary and highly consistent. In vivo genetic studies of fungal mitochondrial systems have served to identify cis-acting sequences within mitochondrial introns, and trans-acting protein products of mitochondrial and nuclear genes which are important for splicing, and to show that some mitochondrial introns are mobile genetic elements. In vitro genetic studies of the self-splicing intron within the Tetrahymena thermophila nuclear large ribosomal RNA precursor (Tetrahymena LSU intron) have been used to examine essential and nonessential RNA sequences and structures in RNA-catalyzed splicing. In vivo and in vitro genetic analysis of the intron within the bacteriophage T4 td gene has permitted the detailed examination of mutant phenotypes by analyzing splicing in vivo and self-splicing in vitro. The genetic studies combined with phylogenetic analysis of intron structure based on comparative nucleotide sequence data [Cech 73 (1988) 259-271] and with biochemical data obtained from in vitro splicing experiments have resulted in significant advances in understanding the biology and chemistry of group-I introns.  相似文献   

2.
Group I self-splicing introns are present in the td, nrdB and sunY genes of bacteriophage T4. We previously reported that whereas the td intron is present in T2, T4 and T6, the nrdB intron is present in T4 only. These studies, which argue in favor of introns as mobile genetic elements, have been extended by defining the distribution of all three T4 introns in a more comprehensive collection of T2, T4 and T6 isolates. The three major findings are as follows: First, all three introns are inconsistently distributed throughout the T-even phage family. Second, different T2 isolates have different intron complements, with T2H and T2L having no detectable introns. Third, the intron open reading frames are inherited or lost as a unit with their respective flanking intron core elements. Furthermore, exon sequences flanking sites where introns are inserted in the T4 td, sunY and nrdB genes were determined for all the different T-even isolates studied. Six of eighteen residues surrounding the junction sequences are identical. In contrast, a comprehensive comparison of exon sequences in intron plus and intron minus variants of the sunY gene indicate that sequence changes are concentrated around the site of intron occurrence. This apparent paradox may be resolved by hypothesizing that the recombination events responsible for intron acquisition or loss require a consensus sequence, while these same events result in sequence heterogeneity around the site.  相似文献   

3.
4.
5.
6.
Bacteriophage T4 contains three self-splicing group I introns in genes in de novo deoxyribonucleotide biosynthesis (in td, coding for thymidylate synthase and in nrdB and nrdD, coding for ribonucleotide reductase). Their presence in these genes has fueled speculations that the introns are retained within the phage genome due to a possible regulatory role in the control of de novo deoxyribonucleotide synthesis. To study whether sequences in the upstream exon interfere with proper intron folding and splicing, we inhibited translation in T4-infected bacteria as well as in bacteria containing recombinant plasmids carrying the nrdB intron. Splicing was strongly reduced for all three T4 introns after the addition of chloramphenicol during phage infection, suggesting that the need for translating ribosomes is a general trait for unperturbed splicing. The splicing of the cloned nrdB intron was markedly reduced in the presence of chloramphenicol or when translation was hindered by stop codons inserted in the upstream exon. Several exon regions capable of forming putative interactions with nrdB intron sequences were identified, and the removal or mutation of these exon regions restored splicing efficiency in the absence of translation. Interestingly, splicing of the cloned nrdB intron was also reduced as cells entered stationary phase and splicing of all three introns was reduced upon the T4 infection of stationary-phase bacteria. Our results imply that conditions likely to be frequently encountered by natural phage populations may limit the self-splicing efficiency of group I introns. This is the first time that environmental effects on bacterial growth have been linked to the regulation of splicing of phage introns.  相似文献   

7.
Group I introns are inserted into genes of a wide variety of bacteriophages of gram-positive bacteria. However, among the phages of enteric and other gram-negative proteobacteria, introns have been encountered only in phage T4 and several of its close relatives. Here we report the insertion of a self-splicing group I intron in the coding sequence of the DNA polymerase genes of PhiI and W31, phages that are closely related to T7. The introns belong to subgroup IA2 and both contain an open reading frame, inserted into structural element P6a, encoding a protein belonging to the HNH family of homing endonucleases. The introns splice efficiently in vivo and self-splice in vitro under mild conditions of ionic strength and temperature. We conclude that there is no barrier for maintenance of group I introns in phages of proteobacteria.  相似文献   

8.
9.
10.
11.
We describe in this review, the salient splicing features of group I introns of bacteriophage T4 and propose, a hypothetical model to fit in the self-splicing of nrdB intron of T4 phage. Occurrence of non-coding sequences in prokaryotic cells is a rare event while it is common in eukaryotic cells, especially the higher eukaryotes. Therefore, T4 bacteriophage can serve as a good model system to study the evolutionary aspects of splicing of introns. Three genes of T4 phage were found to have stretches of non-coding sequences which belonged to the group IA type introns of self-splicing nature.  相似文献   

12.
A self-splicing RNA excises an intron lariat   总被引:61,自引:0,他引:61  
We have investigated the in vitro self-splicing of a class II mitochondrial intron. A model pre-mRNA containing intron 5 gamma of the oxi 3 gene of yeast mitochondrial DNA undergoes an efficient intramolecular rearrangement reaction in vitro. This reaction proceeds under conditions distinct from those optimal for self-splicing of class I introns, such as the Tetrahymena nuclear rRNA intron. Intron 5 gamma is excised as a nonlinear RNA indistinguishable from the in vivo excised intron product by gel electrophoresis and primer extension analysis. Studies of the in vitro excised intron product strongly indicate that it is a branched RNA with a circular component joined by a linkage other than a 3'-5' phosphodiester. Two other products, the spliced exons and the broken form of the lariat, were also characterized. These results show that the class II intron products are similar to those of nuclear pre-mRNA splicing.  相似文献   

13.
J M Gott  D A Shub  M Belfort 《Cell》1986,47(1):81-87
RNA from T4-infected cells yielded multiple end-labeled species when incubated with alpha-32P-GTP under self-splicing conditions. One of these corresponds to the previously identified intron from the td gene of T4, while others appear to represent additional group I introns in T4. Two loci distinct from the td gene were found to hybridize to a mixed alpha-32P-GTP-labeled T4 RNA probe. These mapped in or near the unlinked genes nrdB and nrdC. A fragment from the nrdB region that contains the intron has been cloned and shown to generate characteristic group I splice products with RNA synthesized in vivo and in vitro. Multiple introns, and the prospect that these occur within several genes in the same metabolic pathway, suggest a possible regulatory role for splicing in T4.  相似文献   

14.
Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors   总被引:25,自引:0,他引:25  
G van der Horst  H F Tabak 《Cell》1985,40(4):759-766
We have previously shown linear and circular splicing intermediates resembling intermediates that result from self-splicing of ribosomal precursor RNA of Tetrahymena to be present in mitochondrial RNA. Here we show that splicing of yeast mitochondrial precursor RNA also occurs in vitro in the absence of mitochondrial proteins. The large ribosomal RNA gene, consisting of the intron and part of the flanking exon regions, was inserted behind the SP6 promoter in a recombinant plasmid and was transcribed in vitro. The resulting RNA shows self-catalyzed splicing via incorporation of GTP at the 5'-end of the excised intron, 5'- to 3'-exon ligation, and intron circularization. When purified mitochondrial RNA is incubated under similar conditions with alpha-32P-GTP, the excised ribosomal intron RNA is also labeled, as well as several other RNA species. Some of these RNAs are derived from excised introns from the multiply split gene coding for cytochrome oxidase subunit I.  相似文献   

15.
16.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

17.
Group I introns in rRNA genes are clustered in highly conserved regions that include tRNA and mRNA binding sites. This pattern is consistent with insertion of group I introns by direct interaction with exposed regions of rRNA. Integration of the Tetrahymena group I intron (or intervening sequence, IVS) into large subunit rRNA via reverse splicing was investigated using E. coli 23S rRNA as a model substrate. The results show that sequences homologous to the splice junction in Tetrahymena are the preferred site of integration, but that many other sequences in the 23S rRNA provide secondary targets. Like the original splice junction, many new reaction sites are in regions of stable secondary structure. Reaction at the natural splice junction is observed in 50S subunits and to a lesser extent in 70S ribosomes. These results support the feasibility of intron transposition to new sites in rRNA genes via reverse splicing.  相似文献   

18.
19.
Antibiotics act as inhibitors of various biological processes. Here we demonstrate that some tuberactinomycins, hitherto known as inhibitors of prokaryotic protein synthesis and of group I intron self-splicing, have a modulatory effect on group I intron RNAs. The linear intron, which is excised during the self-splicing process, is still an active molecule capable of performing an intramolecular transesterification resulting in a circular molecule. However, in the presence of sub-inhibitory concentrations of tuberactinomycins, the intron reacts intermolecularly leading to the formation of linear head-to-tail intron-oligomers. The antibiotic stimulates the intron to reactin transinstead ofin cis. The phage T4-derivedtdintron uses the same sites for oligomerisation as for circularisation. Gel-retardation experiments demonstrate that the intron RNA forms non-covalent complexes in the presence of the antibiotic. It might be envisaged that the role of these peptide antibiotics is to bridge RNA molecules mediating RNA – RNA interactions and thus enabling their reaction. The tuberactinomycins are further able to induce the interaction of heterologous introns. The ligation of the T4 phage-derivedtdintron with theTetrahymenarRNA intron is very efficient, resulting in molecules composed of two introns derived from different species. Thetdintron attacks theTetraymenaintron at various sites, which are located within double-stranded regions. These observations suggest that small molecules like these basic peptide antibiotics could have mediated RNA–RNA interactions in a pre-protein era.  相似文献   

20.
Lysinomicin, a naturally-occurring pseudodisaccharide, inhibits translation in prokaryotes. We report that lysinomicin (and three related compounds) are able to inhibit the self-splicing of group I introns, thus identifying pseudodisaccharides as a novel class of group I intron splicing inhibitors. Lysinomicin inhibited the self-splicing of the sunY intron of phage T4 with a Ki of 8.5 microM (+/- 5 microM) and was active against other group I introns. Inhibition was found to be competitive with the substrate guanosine, unlike aminoglycoside antibiotics, which act non-competitively to inhibit the splicing of group I introns. Competitive inhibitors of group I intron splicing known to date all contain a guanidino group that was thought to be required for inhibition; lysinomicin lacks a guanidino group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号