首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.  相似文献   

3.
Using the large subunit of RuBisCo (rbcL) sequences from cyanobacteria, proteobacteria, and diverse groups of algae and green plants, we evaluated the plastid relationship between haptophytes and heterokont algae. The rbcL sequences were determined from three taxa of heterokont algae (Bumilleriopsis filiformis, Pelagomonas calceolata, and Pseudopedinella elastica) and added to 25 published sequences to obtain a data set comprising 1,434 unambiguously aligned sites (approximately 98% of the total rbcL gene). Higher levels of mutational saturation in third codon positions were observed by plotting the pairwise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In accordance with this finding phylogeny reconstructions were completed by omitting third codon positions, thus using 956 bp in weighted-parsimony and maximum-likelihood analyses. The midpoint-rooted phylogenies showed two major clusters, one containing cyanobacteria, glaucocystophytes, a phototrophic euglenoid, chlorophytes, and embryophytes (the green lineage), the other containing proteobacteria, haptophytes, red algae, a cryptophyte, and heterokont algae (the non-green lineage). In the nongreen lineage, the haptophytes formed a sister group to the clade containing heterokont algae, red algae, and the cryptophyte Guillardia theta. This branching pattern was well supported in terms of bootstrap values in weighted- parsimony and maximum-likelihood analyses (100% and 92%, respectively). However, the phylogenetic relationship among red algae, heterokonts, and a cryptophyte taxon was not especially well resolved. A four- cluster analysis was performed to further explore the statistical significance of the relationship between proteobacteria, red algae (including and excluding Guillardia theta), haptophytes, and heterokont algae. This test strongly favored the hypothesis that the heterokonts and red algae are more closely related to each other than either is to proteobacteria or haptophytes. Hence, this molecular study based on a plastid-encoded gene provides additional evidence for a distant relationship between haptophytes and the heterokont algae. It suggests an evolutionary scenario in which the ancestor of the haptophyte lineage engulfed a phototrophic eukaryote and, more recently, the heterokont lineage became phototrophic by engulfing a red alga.   相似文献   

4.
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.  相似文献   

5.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

6.
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment; PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids, with this genome ultimately being lost when photosynthesis comes under full control of the "host" nucleus (e.g., as in heterokonts, haptophytes, and euglenophytes). Genes presently found in the nucleomorph seem to be restricted to those involved in its own maintenance and to that of the plastid; other genes were lost as the endosymbiont was progressively reduced to its present state. Surprisingly, we found that the cryptophyte Pyrenomonas helgolandii possesses a novel type of actin gene that originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage which are unrelated to plastid function. These genes are akin to the products of gene duplication or lateral transfer and provide a source of evolutionary novelty that can significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

7.
Cryptophytes are unicellular eukaryotic algae that acquired photosynthesis secondarily through the uptake and retention of a red-algal endosymbiont. The plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was recently sequenced and found to contain a genetic element similar to a group II intron. Here, we explore the distribution, structure and function of group II introns in the plastid genomes of distantly and closely related cryptophytes. The predicted secondary structures of six introns contained in three different genes were examined and found to be generally similar to group II introns but unusually large in size (including the largest known noncoding intron). Phylogenetic analysis suggests that the cryptophyte group II introns were acquired via lateral gene transfer (LGT) from a euglenid-like species. Unexpectedly, the six introns occupy five distinct genomic locations, suggesting multiple LGT events or recent transposition (or both). Combined with structural considerations, RT–PCR experiments suggest that the transferred introns are degenerate ‘twintrons’ (i.e. nested group II/group III introns) in which the internal intron has lost its splicing capability, resulting in an amalgamation with the outer intron.  相似文献   

8.
Stiller  J.W.  Riley  J. L.  & Hall  B.D. 《Journal of phycology》2000,36(S3):64-64
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the "host" nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii , that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

9.
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the “host” nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii, that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

10.
Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.  相似文献   

11.
The dinoflagellates contain diverse plastids of uncertain origin. To determine the origin of the peridinin‐ and fucoxanthin‐containing dinoflagellate plastid, we sequenced the plastid‐encoded psaA, psbA, and rbcL genes from various red and dinoflagellate algae. The psbA gene phylogeny, which was made from a dataset of 15 dinoflagellates, 22 rhodophytes, five cryptophytes, seven haptophytes, seven stramenopiles, two chlorophytes, and a glaucophyte as the outgroup, supports monophyly of the peridinin‐, and fucoxanthin‐containing dinoflagellates, as a sister group to the haptophytes. The monophyletic relationship with the haptophytes is recovered in the psbA + psaA phylogeny, with stronger support. The rubisco tree utilized the ‘Form I’ red algal type of rbcL and included fucoxanthin‐containing dinoflagellates. The dinoflagellate + haptophyte sister relationship is also recovered in this analysis. Peridinium foliaceum is shown to group with the diatoms in all the phylogenies. Based on our analyses of plastid sequences, we postulate that: (1) the plastid of peridinin‐, and fucoxanthin‐containing dinoflagellates originated from a common ancestor; (2) the ancestral dinoflagellate acquired its plastid from a haptophyte though a tertiary plastid replacement; (3) ‘Form II’ rubisco replaced the ancestral rbcL after the divergence of the peridinin‐, and fucoxanthin‐containing dinoflagellates; and (4) we confirm that the plastid of P. foliaceum originated from a Stramenopiles endosymbiont.  相似文献   

12.
Although the dinophytes generally possess red‐algal‐derived secondary plastids, tertiary plastids originating from haptophyte and diatom ancestors are recognized in some lineages within the Dinophyta. However, little is known about the nuclear‐encoded genes of plastid‐targeted proteins from the dinophytes with diatom‐derived tertiary plastids. We analyzed the sequences of the nuclear psbO gene encoding oxygen‐evolving enhancer protein from various algae with red‐algal‐derived secondary and tertiary plastids. Based on our sequencing of 10 new genes and phylogenetic analysis of PsbO amino acid sequences from a wide taxon sampling of red algae and organisms with red‐algal‐derived plastids, dinophytes form three separate lineages: one composed of peridinin‐containing species with secondary plastids, and the other two having haptophyte‐ or diatom‐derived tertiary plastids and forming a robust monophyletic group with haptophytes and diatoms, respectively. Comparison of the N‐terminal sequences of PsbO proteins suggests that psbO genes from a dinophyte with diatom‐derived tertiary plastids (Kryptoperidinium) encode proteins that are targeted to the diatom plastid from the endosymbiotic diatom nucleus as in the secondary phototrophs, whereas the fucoxanthin‐containing dinophytes (Karenia and Karlodinium) have evolved an additional system of psbO genes for targeting the PsbO proteins to their haptophyte‐derived tertiary plastids from the host dinophyte nuclei.  相似文献   

13.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

14.
Plastids (the photosynthetic organelles of plants and algae) ultimately originated through an endosymbiosis between a cyanobacterium and a eukaryote. Subsequently, plastids spread to other eukaryotes by secondary endosymbioses that took place between a eukaryotic alga and a second eukaryote. Recently, evidence has mounted in favour of a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their non-photosynthetic relatives, collectively termed chromalveolates). As of yet, however, no single molecular marker has been described which supports a common origin for all of these plastids. One piece of the evidence for a single origin of chromalveolate plastids came from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrial-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts, and found the haptophyte homologues to branch within the strongly supported clade of chromalveolate plastid-targeted GAPDH genes. Interestingly, plastid-targeted GAPDH genes from the haptophytes were more closely related to apicomplexan genes than was expected. Overall, the evolution of plastid-targeted GAPDH reinforces other data for a red algal ancestry of apicomplexan plastids, and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in non-photosynthetic lineages such as ciliates.  相似文献   

15.
I discuss the evidence for a single origin of primary plastids in the context of a paper in this issue challenging this view, and I review recent evidence concerning the number of secondary plastid endosymbioses and the controversy over whether the relic plastid of apicomplexans is of red or green algal origin. A broad consensus has developed that the plastids of green algae, red algae, and glaucophytes arose from the same primary, cyanobacterial endosymbiosis. Although the analyses in this issue by Stiller and colleagues firmly undermine one of many sources of data, gene content similarities among plastid genomes used to argue for a monophyletic origin of primary plastids, the overall evidence still clearly favors monophyly. Nonetheless, this issue should not be considered settled and new data should be sought from better sampling of cyanobacteria and glaucophytes, from sequenced nuclear genomes, and from careful analysis of such key features as the plastid import apparatus. With respect to the number of secondary plastid symbioses, it is completely unclear as to whether the secondary plastids of euglenophytes and chlorarachniophytes arose by the same or two different algal endosymbioses. Recent analyses of certain plastid and nuclear genes support the chromalveolate hypothesis of Cavalier-Smith, namely, that the plastids of heterokonts, haptophytes, cryptophytes, dinoflagellates, and apicomplexans all arose from a common endosymbiosis involving a red alga. However, another recent paper presents intriguing conflicting data on this score for one of these groups—apicomplexans—arguing instead that they acquired their plastids from green algae.  相似文献   

16.
Red-fluorescent, non-phycobilin-containing plastids were found in the heterotrophic dinoflagellate, Dinophysis mitra. Transmission electron microscopy showed that they contained a three-layer thylakoid, the absence of girdle lamella, and an embedded pyrenoid with thylakoid intrusions. These characteristics all coincide with haptophyte plastids. Phylogenetic analysis of the plastid small-subunit ribosomal DNA (SSU rDNA) revealed that the Dinophysis mitra sequences are distantly related to those of phycobilin-containing Dinophysis species and are positioned within a lineage of haptophytes belonging to Prymnesiophyceae. Because the plastid SSU rDNA sequences of Dinophysis mitra showed significant heterogeneity, despite being derived from a single species, it is highly likely that they were not established as plastids through an evolutionary process but are "kleptoplastids" (temporally stolen plastids) from multiple sources of haptophytes in the environment. We deduced that Dinophysis mitra takes up haptophytes myzocytotically and selectively retains the plastid with surrounding plastidal membranes, whereas other haptophyte cell components are degraded. This represents another type of kleptoplastidy in the Dinophysis species, which mostly harbor cryptophyte plastids, and is the first evidence of kleptoplastidy originating from haptophytes.  相似文献   

17.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   

18.
Cryptomonad algae acquired their plastids by the secondary endosymbiotic uptake of a eukaryotic red alga. Several other algal lineages acquired plastids through such an event [1], but cryptomonads are distinguished by the retention of a relic red algal nucleus, the nucleomorph [2]. The nucleomorph (and its absence in other lineages) can reveal a great deal about the process and history of endosymbiosis, but only if we know the relationship between cryptomonads and other algae, and this has been controversial. Several recent analyses have suggested a relationship between plastids of cryptomonads and some or all other red alga-containing lineages [3-6], but we must also know whether host nuclear genes mirror this relationship to determine the number of endosymbiotic events, and this has not been demonstrated. We have carried out an expressed sequence tag (EST) survey of the cryptomonad Guillardia theta. Phylogenetic analyses of 102 orthologous nucleus-encoded proteins (18,425 amino acid alignment positions) show a robust sister-group relationship between cryptomonads and the haptophyte algae, which also have a red secondary plastid. This relationship demonstrates that loss of nucleomorphs must have taken place in haptophytes independently of any other red alga-containing lineages and that the ancestor of both already contained a red algal endosymbiont.  相似文献   

19.
Biology and systematics of heterokont and haptophyte algae   总被引:1,自引:0,他引:1  
In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classified into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed significantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heterokont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas).  相似文献   

20.
The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号