首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Antibacterial activity of 15-residue lactoferricin derivatives.   总被引:3,自引:0,他引:3  
Lactoferricins are a class of antibacterial peptides isolated after gastric-pepsin digest of the mammalian iron-chelating-protein lactoferrin. For investigation of antibacterial activity, we prepared short synthetic derivatives of bovine, human, caprine, murine and porcine lactoferricins with 15-amino-acid residues of high sequence homology. The peptides corresponded to amino-acid residues 17-31 of the mature bovine lactoferrin. Only the bovine and caprine derivatives displayed measurable antibacterial activity, with the bovine one having a minimal inhibitory concentration of 24 microM and being 10 times more active than the caprine one against Escherichia coli. An alanine-scan of the bovine lactoferricin derivative was performed to identify specific amino acids that were important for the antibacterial activity. We found that neither of the two tryptophan residues (Trp 6 and Trp 8) present in the bovine lactoferricin derivative could be replaced by alanine without a major loss of antibacterial activity. The other lactoferricin derivatives tested contained only one tryptophan residue (Trp 6). Modified human, caprine and porcine lactoferricin derivatives containing two tryptophan residues (Trp 6 and Trp 8) displayed minimal inhibitory concentrations of 74, 174 and 219 microM, respectively, which represented up to a six-fold increase in antibacterial activity. The alanine-scan also revealed that the antibacterial activity was increased when acetamidomethyl-protected cysteine and unprotected glutamine (Cys 3 and Gln 7) were replaced with alanine. Only the bovine lactoferricin derivative and a few of its alanine-modified derivatives displayed measurable activity against Staphylococcus aureus.  相似文献   

2.
This review focuses on important structural features affecting the antimicrobial activity of 15-residue derivatives of lactoferricins. Our investigations are based on an alanine-scan of a 15-residue bovine lactoferricin derivative that revealed the absolute necessity of two tryptophan residues for antimicrobial activity. This "tryptophan-effect" was further explored in homologous derivatives of human, caprine, and porcine lactoferricins by the incorporation of one additional tryptophan residue, and by increasing the content of tryptophan in the bovine derivative to five residues. Most of the resulting peptides display a substantial increase in antimicrobial activity. To identify which molecular properties make tryptophan so effective, a series of bovine lactoferricin derivatives were prepared containing non-encoded unnatural aromatic amino acids, which represented various aspects of the physicochemical nature of tryptophan. The results clearly demonstrate that tryptophan is not unique since most of the modified peptides were of higher antimicrobial potency than the native peptide. The size and three-dimensional shape of the inserted "super-tryptophans" are the most important determinants for the high antimicrobial activity of the modified peptides. This review also describes the use of a "soft-modeling" approach in order to identify important structural parameters affecting the antimicrobial activity of modified 15-residue murine lactoferricin derivatives. This QSAR-study revealed that the net charge, charge asymmetry, and micelle affinity of the peptides were the most important structural parameters affecting their antimicrobial activity.  相似文献   

3.
牛乳铁蛋白素是牛乳铁蛋白经胃蛋白酶水解后释放出来的一段小肽,是牛乳铁蛋白的活性中心。通过对不同动物来源乳铁蛋白素活性的研究发现牛乳铁蛋白素的抗菌活性最强。进一步的丙氨酸突变实验研究表明,在牛乳铁蛋白素活性最强的15个氨基酸序列中,色氨酸在抗菌过程中起着重要作用。牛乳铁蛋白素正是因为含有两个色氨酸,其活性才会比只含有一个色氨酸的其它来源的乳铁蛋白素活性要高。很多实验室围绕着牛乳铁蛋白素中的色氨酸、碱性氨基酸和其他一些芳香族氨基酸展开了一系列的突变研究,本文综述了这些研究及在氨基酸改变后活性的变化,为以后研究及开发牛乳铁蛋白素提供理论基础。  相似文献   

4.
We have investigated the effects of charge and lipophilicity on the antibacterial activity of an undecapeptide (FKCRRWQWRMK) derived from the sequence of bovine lactoferricin. We prepared ten analogues that were modified by the incorporation of Ala, Tyr, Trp, Met and Arg residues, which are amino acids known to be important for the antibacterial activity of longer derivatives of lactoferricins. All undecapeptides contained the native Trp residues in positions 6 and 8, and the Arg residues in positions 5 and 9. Generally, the Gram-positive bacterium Staphylococcus aureus was more susceptible to these undecapeptides than the Gram-negative bacteria, and a higher antibacterial activity was observed against Escherichia coli than against Pseudomonas aeruginosa. The only exception was the peptide Undeca 9 (RRWYRWAWRMR-NH2), which was almost equally active against all three test strains, displaying minimal inhibitory concentrations of 10 microg/ml (5.8 microM), 7.5 microg/ml (4.4 microM) and 5 microg/ml (2.9 microM) against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The peptides Undeca 6 (YRAWRWAWRWR-NH2) and Undeca 7 (YRMWRWAWRWR-NH2) were the two most active undecapeptides against Staphylococcus aureus, both displaying a minimal inhibitory concentration of 2.5 microg/ml (1.5 microM). The study showed that a level was reached in which undecapeptides having a net charge above +4 and containing three or four Trp residues all displayed a high antibacterial activity. All undecapeptides prepared were essentially non-haemolytic, but undecapeptides containing more than three Trp residues displayed 50% haemolysis of human red blood cells at concentrations above 400 microg/ml (>230 microM).  相似文献   

5.
Highly antimicrobial active arginine- and tryptophan-rich peptides were synthesized ranging in size from 11 to five amino acid residues in order to elucidate the main structural requirement for such short antimicrobial peptides. The amino acid sequences of the peptides were based on previous studies of longer bovine and murine lactoferricin derivatives. Most of the peptides showed strong inhibitory action against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacterium Staphylococcus aureus. For the most active derivatives, the minimal inhibitory concentration values observed for the Gram-negative bacteria were 5 microg/ml (3.5 microM), whereas it was 2.5 microg/ml (1.5 microM) for the Gram-positive bacterium. It was essential for the antimicrobial activity that the peptides contained a minimum of three tryptophan and three arginine residues, and carried a free N-terminal amino group and an amidated C-terminal end. Furthermore, a minimum sequence size of seven amino acid residues was required for a high antimicrobial activity against Pseudomonas aeruginosa. The insertion of additional arginine and tryptophan residues into the peptides resulted only in small variations in the antimicrobial activity, whereas replacement of a tryptophan residue with tyrosine in the hepta- and hexapeptides resulted in reduced antimicrobial activity, especially against the Gram-negative bacteria. The peptides were non-haemolytic, making them highly potent as prospective antibiotic agents.  相似文献   

6.
Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides.  相似文献   

7.
A modified tryptophan, beta-[2-(2,2,5,7,8-pentamethylchroman-6-sulphonyl)-indol-3-yl]alanine, Trp(2-Pmc) = Tpc has been synthesized. Replacement of tryptophan in a bovine lactoferricin model peptide with the modified tryptophan resulted in peptides with a substantially increased antibacterial activity against Escherichia coli and Staphylococcus aureus. The most active peptides against each bacterial strain displayed minimal inhibitory concentrations of 7.5 microg/ml.  相似文献   

8.
A model peptide, FKCRRWQWRMKKLGA, residues 17-31 of bovine lactoferricin, has been subjected to structure-antibacterial activity relationship studies. The two Trp residues are very important for antibacterial activity, and analogue studies have demonstrated the significance of the size, shape and aromatic character of the side chains. In the current study we have replaced Trp residues in the model peptide with bulky aromatic amino acids to elucidate further the importance of size and shape. The counterproductive Cys residue in position 3 was also replaced by these aromatic amino acids. The largest aromatic amino acids employed resulted in the most active peptides. The peptides containing these hydrophobic residues were generally more active against Staphylococcus aureus than against Escherichia coli, indicating that the bacterial specificity as well as the antibacterial efficiency can be altered by employing large hydrophobic aromatic amino acid residues.  相似文献   

9.
The powerful antimicrobial properties of bovine lactoferricin (LfcinB) make it attractive for the development of new antimicrobial agents. An 11-residue linear peptide portion of LfcinB has been reported to have similar antimicrobial activity to lactoferricin itself, but with lower hemolytic activity. The membrane-binding and membrane-perturbing properties of this peptide were studied together with an amidated synthetic version with an added disulfide bond, which was designed to confer increased stability and possibly activity. The antimicrobial and cytotoxic properties of the peptides were measured against Staphylococcus aureus and Escherichia coli and by hemolysis assays. The peptides were also tested in an anti-cancer assay against neuroblastoma cell lines. Vesicle disruption caused by these LfcinB derivatives was studied using the fluorescent reporter molecule calcein. The extent of burial of the two Trp residues in membrane mimetic environments were quantitated by fluorescence. Finally, the solution NMR structures of the peptides bound to SDS micelles were determined to provide insight into their membrane bound state. The cyclic peptide was found to have greater antimicrobial potency than its linear counterpart. Consistent with this property, the two Trp residues of the modified peptide were suggested to be embedded deeper into the membrane. Although both peptides adopt an amphipathic structure without any regular alpha-helical or beta-sheet conformation, the 3D-structures revealed a clearer partitioning of the cationic and hydrophobic faces for the cyclic peptide.  相似文献   

10.
New indolicidin analogues with potent antibacterial activity.   总被引:2,自引:0,他引:2  
Indolicidin is a 13-residue antimicrobial peptide amide, ILPWKWPWWPWRR-NH2, isolated from the cytoplasmic granules of bovine neutrophils. Indolicidin is active against a wide range of microorganisms and has also been shown to be haemolytic and cytotoxic towards erythrocytes and human T lymphocytes. The aim of the present paper is two-fold. First, we examine the importance of tryptophan in the antibacterial activity of indolicidin. We prepared five peptide analogues with the format ILPXKXPXXPXRR-NH2 in which Trp-residues 4,6,8,9,11 were replaced in all positions with X = a single non-natural building block; N-substituted glycine residue or nonproteinogenic amino acid. The analogues were tested for antibacterial activity against both Staphylococcus aureus American type culture collection (ATCC) 25923 and Escherichia coli ATCC 25922. We found that tryptophan is not essential in the antibacterial activity of indolicidin, and even more active analogues were obtained by replacing tryptophan with non-natural aromatic amino acids. Using this knowledge, we then investigated a new principle for improving the antibacterial activity of small peptides. Our approach involves changing the hydrophobicity of the peptide by modifying the N-terminus with a hydrophobic non-natural building block. We prepared 22 analogues of indolicidin and [Phe(4,6,8,9,11)] indolicidin, 11 of each, carrying a hydrophobic non-natural building block attached to the N-terminus. Several active antibacterial analogues were identified. Finally, the cytotoxicity of the analogues against sheep erythrocytes was assessed in a haemolytic activity assay. The results presented here suggest that modified analogues of antibacterial peptides, containing non-natural building blocks, are promising lead structures for developing future therapeutics.  相似文献   

11.
用不同的化学试剂修饰了柞蚕抗菌肽D分子中的色氨酸、精氨酸和赖氨酸等氨基酸残基。NBS修饰抗菌肽D,以及氨肽酶M对抗菌肽D作用的结果表明色氨酸残基对抗菌肽D抑制E.coli D31的作用影响不大。CHD和MLH对精氨酸和赖氨酸残基的修饰,导致抗菌肽D失去抑制E.coli的作用,但可逆地消除CHD和MLH的修饰作用后,抗菌肽D恢复了对E.coli D31的抑菌作用。这些结果初步认为,抗菌肽D抑菌作用与分子中的荷电性有关,改变了分子的电荷,也就同时失去了其抑菌功能。 此外,对精氨酸残基修饰的结果还表明,抗菌肽D的免疫原性与精氨酸残基有关。但是,抗菌肽D的免疫决定簇与其生物活性中心并不完全平行。  相似文献   

12.
13.
When Naja naja atra phospholipase A2, which contains three tryptophan residues at the 18th, 19th, and 61st positions, was oxidized with N-bromosuccinimide at pH 4.0, its activity decreased in a convex manner with increase in the extent of oxidation of tryptophan residues. The curve shape showed that the tryptophan residue oxidized last is most responsible for the activity. The order of accessibilities of the three tryptophan residues, which was analyzed according to the method reported previously (Mohri et al. (1876) J. Biochem. 100, 883-893), was Trp-61 greater than Trp-19 greater than Trp-18. Thus, Trp-18 was evaluated to be essential for activity. Difference spectra of phospholipase A2 produced by titrating with laurylphosphorylcholine in the presence of Ca2+, which are due in large part to perturbation of the tryptophan residue(s), were retained with phospholipase A2 derivatives containing 1.2 and 2.0 mol of tryptophan residues oxidized but not with the derivative containing 3.0 mol of tryptophan residues oxidized. Such observations led us to assume that Trp-18 is involved in the specific site that interacts with phospholipid.  相似文献   

14.
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence and peptides corresponding to chimeras of human and bovine sequences. None of the peptides corresponding to different regions of native human lactoferricin showed any antimicrobial activity. The results underline the importance of the content of tryptophan and arginine residues, and the relative location of these residues for antimicrobial activity. Results obtained for the same assays performed with LPS mutants suggest that lipid A is not the main binding site for lactoferricin which interacts first with the negative charges present in the inner core. Computer modelling of the most active peptides led to a model in which positively charged residues of the cationic peptide interact with negative charges carried by the LPS to disorganise the structure of the outer membrane and facilitate the approach of tryptophan residues to the lipid A in order to promote hydrophobic interactions.  相似文献   

15.
The saccharide binding ability of the low affinity (LA-) binding site of ricin D was abrogated by N-bromosuccinimide (NBS)-oxidation, while in the presence of lactose the number of tryptophan residues eventually oxidized decreased by 1 mol/mol and the saccharide binding ability was retained (Hatakeyama et al., (1986) J. Biochem. 99, 1049-1056). Based on these findings, the tryptophan residue located at the LA-binding site of ricin D was identified. Two derivatives of ricin D which were modified with NBS in the presence and absence of lactose were separated into their constituent polypeptide chains (A- and B-chains), respectively. The modified tryptophan residue or residues was/were found to be contained in the B-chain, but not in the A-chain. From lysylendopeptidase and chymotryptic digests, peptides containing oxidized tryptophan residues were isolated by gel filtration on Bio-Gel P-30 and HPLC. Analysis of the peptides containing oxidized tryptophan revealed that three tryptophan residues at positions 37, 93, and 160 on the B-chain were oxidized in the inactive derivative of ricin D, in which the saccharide binding ability of the LA-binding site was abrogated by NBS-oxidation. On the other hand, the modified residues were determined to be tryptophans at positions 93 and 160 in the active derivative of ricin D which was modified in the presence of lactose, indicating that upon binding with lactose, the tryptophan residue at position 37 of the B-chain was protected from NBS-oxidation. From these results, it is suggested that tryptophan at position 37 on the B-chain is the essential residue for saccharide binding at the LA-binding site of ricin D.  相似文献   

16.
Transforming growth factor alpha (TGF-alpha) is a 50-amino-acid peptide that stimulates cell proliferation via binding to cell surface receptors. To identify the structural features of TGF-alpha that govern receptor-ligand interactions, we prepared synthetic peptide fragments and recombinant mutant proteins of TGF-alpha. These TGF-alpha derivatives were tested in receptor binding and mitogenesis assays. Synthetic peptides representing the N terminus, the C terminus, or the individual disulfide constrained rings of TGF-alpha did not exhibit receptor-binding or mitogenic activity. Replacement of the cysteines with alanines at positions 8 and 21, 16 and 32, and 34 and 43 or at positions 8 and 21 and 34 and 43 yielded inactive mutant proteins. However, mutant proteins containing substitutions or deletions in the N-terminal region retained significant biologic activity. Conservative amino acid changes at residue 29 or 38 or both and a nonconservative amino acid change at residue 12 had little effect on binding or mitogenesis. However, nonconservative amino acid changes at residues 15, 38, and 47 produced dramatic decreases in receptor binding (23- to 71-fold) and mitogenic activity (38- to 125-fold). These studies indicate that at least three distinct regions of TGF-alpha contribute to biologic activity.  相似文献   

17.
An 11-residue peptide (FQWQRNMRKVR) homologous to just over half the loop region of human lactoferricin is thought to be responsible for antimicrobial properties of human lactoferricin. Multiple antigen peptides (MAP) of the 11-residue peptide exerted significant antibacterial effects against a broad spectrum of bacteria including MRSA. More than eight branching was favourable for increasing its antibacterial activity. Our report shows a novel possibility for MAP to increase the activity of antibiotic peptides other than simply to stimulate antibody production, as reported so far.  相似文献   

18.
LFB (FKCRRWQWRMKKLGA-HN2) is a 15-residue linear antimicrobial peptide derived from bovine lactoferricin, which has antimicrobial activity similar to that of the intact 25-residue disulfide-cyclized peptide. Previous alanine-scan studies, in which all of the residues in LFB were individually replaced with Ala, showed that the 2 tryptophan (Trp) residues of LFB were crucial to its antimicrobial activity. When either Trp6 or Trp8 was replaced with Ala (LFBA6 and LFBA8, respectively), these 2 peptides were almost devoid of antimicrobial activity. We determined the structures of LFB, LFBA6, and LFBA8 bound to membrane-mimetic SDS micelles using NMR spectroscopy, and studied their interactions with different phospholipid-model membranes. The membrane interactions of LFB exhibited little correlation with its antimicrobial activity, suggesting that the mechanism of action of LFB involves intracellular targets. However, the much higher antimicrobial activity of LFB compared with LFBA6 and LFBA8 might result, in part, from the formation of energetically favorable cation-pi interactions observed only in LFB. Information about the importance of Arg and Trp cation-pi interactions will provide insight for the future design of potent antimicrobial peptidomimetics.  相似文献   

19.
PMAP-23 is a 23-residue antimicrobial peptide from porcine myeloid cells. In order to determine the effects of two Trp residues in positions 7 and 21 of PMAP-23 on antibacterial activity and phospholipid vesicle interacting property, two analogues in which Ala is substituted for Trp residue in position 7 or 21 were synthesized. A(21)-PMAP-23 exhibited reduced antibacterial activity and phospholipid vesicle disrupting activity when compared to those of PMAP-23 and A(7)-PMAP-23. PMAP-23 readily interacted with model lipid membrane and induced membrane destabilization. Therefore antibacterial activity induced by PMAP-23 is due to the interaction of cell membrane with peptide followed by membrane perturbation. A significant structural change on the SDS micelle was not found by Ala substitution of the Trp residue of PMAP-23. Also, there is a good correlation between hydrophobic interaction on RP-HPLC, expressed as retention time on RP-HPLC, and antibacterial activity. The vesicle titration experiment indicated that Trp residues located at near C-terminus are accessible to hydrophobic tail of phospholipid vesicle. This result suggests that the C-terminal end of PMAP-23 penetrates into the lipid bilayer in the course of the interaction with phospholipid membranes and is important for its antibacterial activity.  相似文献   

20.
Two mutational approaches were used to perform a thorough structure-function analysis of the first 53 residues of the 159-residue cytokine human interleukin-1 alpha (hIL-1 alpha). In this study, a total of 26 deletions, 97 multiple amino acid substitutions, and 46 single amino acid substitutions were examined. A synthetic hIL-1 alpha gene with many unique restriction sites was constructed to facilitate the molecular manipulations that were performed. The mutational methods employed include: Bal-31 exonuclease-generated deletions at unique restriction sites and combinatorial cassette mutagenesis via segment replacement with synthetic DNA. The mutant hIL-1 alpha proteins were expressed at high levels in Escherichia coli and were assayed for biological activity in a mouse T cell proliferation assay. We observed that the activity of hIL-1 alpha was extraordinarily sensitive to deletion mutations. Most internal deletions of as few as 1 or 2 residues substantially reduced biological activity. Combinatorial cassette mutagenesis on residues 13-53 of hIL-1 alpha identified 15 important residue positions. Of these, 8 displayed strong preferences for residues with hydrophilic side chains, and the remainder preferred hydrophobic side chains. We found that functional hIL-1 alpha had an absolute requirement for a basic residue (Arg, Lys, or His) at either position 15 or 16, and that Leu was preferred at position 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号