首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ellison M  Gao F  Wang HL  Sine SM  McIntosh JM  Olivera BM 《Biochemistry》2004,43(51):16019-16026
The Conus peptides alpha-conotoxin ImI (alpha-ImI) and ImII (alpha-ImII) differ by only three of 11 residues in their primary sequences and yet are shown to inhibit the human alpha7 nicotinic acetylcholine receptor (nAChR) by targeting different sites. Mutations at both faces of the classical ligand binding site of the alpha7 nAChR strongly affect antagonism by alpha-ImI but not alpha-ImII. The effects of the mutations on alpha-ImI binding and functional antagonism are explained by computational docking of the NMR structure of alpha-ImI to a homology model of the ligand binding domain of the alpha7 nAChR. A distinct binding site for alpha-ImII is further demonstrated by its weakened antagonism for a chimeric receptor in which the membrane-spanning domains and intervening linkers of the alpha7 nAChR are replaced with the corresponding sequence from the serotonin type-3 receptor (5HT(3)). The two toxins also discriminate between different subtypes of human nicotinic receptors; alpha-ImII most strongly blocks the human alpha7 and alpha1beta1deltaepsilon receptor subtypes, while alpha-ImI most potently blocks the human alpha3beta2 subtype. Collectively, the data show that while alpha-ImI targets the classical competitive ligand binding site in a subtype selective manner, alpha-ImII is a probe of a novel inhibitory site in homomeric alpha7 nAChRs.  相似文献   

2.
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and alpha4beta2nAChR were determined using the subtype-selective nicotinic receptor ligands [(3)H]methyllycaconitine and [(3)H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Abeta(1-42) bound to the alpha7nAChR with exceptionally high affinity, as indicated by K(i) values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the alpha7nAChR, the affinity of Abeta(1-42) for the alpha4beta2nAChR was approximately 5,000-fold lower, as indicated by corresponding K(i) values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Abeta(1-42) and alpha7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.  相似文献   

3.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

4.
5.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

6.
Neuronal nicotinic acetylcholine receptors (nAChRs) are thought to be involved in the pathogenesis of Alzheimer's disease (AD). Interestingly, in the brains of patients with this disease, losses of several subtypes of nAChRs on neurons have been reported, while an increase in alpha7 nAChRs was recently detected in the astrocytes. However, little is presently known about the expressions of individual subunits of nAChR on rat astrocytes in primary culture or the possible influence of exposure to beta-amyloid peptide (Abeta), a neuropathological hallmark of AD, on this expression. Thus, in the present investigation the levels of individual nAChR subunits on primary rat astrocytes and the possible direct influence of Abetas on the receptors were examined by RT-PCR, Western blotting, monitoring intracellular free calcium and immunohistochemistry. The alpha4, alpha7, beta2 and beta3 subunits and related calcium channel responses were found in these cells, whereas neither alpha2 nor alpha3 could be detected. Elevation in the levels of alpha7, alpha4 and beta2 mRNAs and proteins were observed in astrocytes exposed to 0.1-100nM Abeta(1-42). In contrast, incubation with 1muM Abeta(1-42) or Abeta(35-25) did not affect these levels. We propose that the enhanced expression of alpha7, alpha4 and beta2 nAChRs by astrocytes stimulated directly by nanomolar concentrations of Abeta(1-42) might be related to ongoing defensive or compensative mechanisms.  相似文献   

7.
Nicotinic acetylcholine receptors (nAChRs) affect a wide array of biological processes, including learning and memory, attention, and addiction. lynx1, the founding member of a family of mammalian prototoxins, modulates nAChR function in vitro by altering agonist sensitivity and desensitization kinetics. Here we demonstrate, through the generation of lynx1 null mutant mice, that lynx1 modulates nAChR signaling in vivo. Its loss decreases the EC(50) for nicotine by approximately 10-fold, decreases receptor desensitization, elevates intracellular calcium levels in response to nicotine, and enhances synaptic efficacy. lynx1 null mutant mice exhibit enhanced performance in specific tests of learning and memory. Consistent with reports that mutations resulting in hyperactivation of nAChRs can lead to neurodegeneration, aging lynx1 null mutant mice exhibit a vacuolating degeneration that is exacerbated by nicotine and ameliorated by null mutations in nAChRs. We conclude that lynx1 functions as an allosteric modulator of nAChR function in vivo, balancing neuronal activity and survival in the CNS.  相似文献   

8.
Age-related changes in the mammalian dorsal hippocampus are associated with diminished expression of neuronal nicotinic acetylcholine receptors (nAChR), which is particularly severe in pathologies such as those associated with dementias, including Alzheimer's disease. Because the mouse is a useful model for age-related decline in nAChR expression in the basal forebrain and limbic system, we used immunohistochemistry to examine the influence of long-term (12-month) oral administration of nicotine and/or the cyclooxygenase-2 (COX-2) preferring non-steroidal anti-inflammatory drug (NSAID) NS398 on nAChR alpha4, alpha5, alpha7, and beta4 expression in the C57BL/6 mouse. Inhibitory neurons of the dorsal hippocampus that express nAChRs also constitutively express COX-2 and the peroxisome proliferator-antagonist receptor subtype gamma-2 (PPAR gamma2) which is also a target of NS398. Administration of NS398 correlated with retention of nAChR alpha4 and to a lesser extent nAChR beta4, but not nAChR alpha5 or alpha7, but nicotine exhibited no similar effect. Nicotine and NS398 co-administration abolished the NS398-related effect on nAChR alpha4 retention. These results provide evidence that the interaction during aging between oral administration of nicotine and NSAIDs are not straightforward and could even be antagonistic when combined.  相似文献   

9.
Bovine lactadherin binds to the alpha(v)beta(3) and alpha(v)beta(5) integrins in an RGD-dependent manner and also to anionic phospholipids. During the affinity purification of lactadherin binding receptors, a 35-kDa protein persistently coeluted with the alpha(v)beta(5) integrin receptor. Subsequently, peptide mapping, amino acid sequencing, and mass spectrometry analysis identified this protein as bovine annexin-V. Annexin-V accompanied the integrin receptor eluted with either RGD peptide or with EDTA suggesting that annexin-V bound specifically to the alpha(v)beta(5) integrin. To further investigate this putative interaction of annexin-V with the alpha(v)beta(5) integrin receptor, human annexin-V and intracellular domains of the human alpha(v)beta(5) integrin subunits were used in ligand blotting assays. Radiolabeled annexin-V showed weak binding to the intracellular part of beta(5) integrin subunit. However, by adding the aminophospholipid, phosphatidyl serine, the interaction with the beta(5) cytoplasmic peptide was enhanced many fold. Furthermore, the interaction was shown to be independent of phosphorylation, as annexin-V bound to unphosphorylated beta(5) peptide at a similar level to the phosphorylated peptide. Since binding of annexin-V to the alpha(v) integrin subunit tail was not detected, annexin-V was shown to associate specifically with the beta(5) cytoplasmic tail. Together these findings suggest a novel link between annexins and the integrin receptor family.  相似文献   

10.
The Alzheimer's disease pathogenic peptide, beta-amyloid42 (A beta 42), induces tau protein phosphorylation. Because hyperphosphorylated tau is a consistent component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease, we investigated the signaling molecules involved in A beta 42-induced tau phosphorylation. We show that A beta 42 elicited rapid and reversible tau protein phosphorylation on three proline-directed sites (Ser-202, Thr-181, and Thr-231) in systems enriched in alpha 7 nicotinic acetylcholine receptors (alpha 7nAChR) including serum-deprived human SK-N-MC neuroblastoma cells and hippocampal synaptosomes. Although alpha 7nAChR agonists induced similar phosphorylation, pretreatment with antisense-alpha 7nAChR oligonucleotides (in cells) or alpha 7nAChR antagonists (in cells and synaptosomes) attenuated A beta-induced tau phosphorylation. Western analyses showed that the mitogen-activated kinase cascade proteins, ERKs and c-Jun N-terminal kinase (JNK-1), were concomitantly activated by A beta 42, and their respective kinase inhibitors suppressed A beta-induced tau phosphorylation. More importantly, recombinant-activated ERKs and JNK-1 could differentially phosphorylate tau protein in vitro. Thus, the alpha 7nAChR may mediate A beta-induced tau protein phosphorylation via ERKs and JNK-1.  相似文献   

11.
The structures of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha3beta2 model to identify beta2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha3beta2 nAChR by two-electrode voltage clamp analysis. Although a beta2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta2-F117A, beta2-V109A, and beta2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta2-F117A mutant was combined with the alpha4 instead of the alpha3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta2-F117A, beta2-V109A, and beta2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha3beta2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.  相似文献   

12.
Nicotine, the causative agent of addiction to tobacco, can also be a neuroprotectant. Nicotine-induced neuroprotection against different toxins is imparted through pharmacologically distinct neuronal nicotinic acetylcholine receptors (nAChR) where protection against chronic N-methyl-d-aspartic acid (NMDA) exposure is through nAChRalpha7 but protection against the toxic peptide of amyloid precursor protein, Abeta25-35, is through nAChRalpha4beta2. The inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is also neuroprotective, however, in the presence of nicotine, neuroprotection against NMDA is abolished. The specificity of nicotine-TNFalpha antagonism was further refined using a mouse transgenic dominant negative of nAChRalpha7 in which nicotine failed to induce neuroprotection against NMDA and antagonism of TNFalpha was absent. However, nicotine-mediated neuroprotection against Abeta25-35 was unaffected and, therefore, did not require the expression of functional nAChRalpha7s. The mechanism of TNFalpha-mediated neuroprotection and antagonism by nicotine was independent of caspase 8 activation or nuclear factor kappa B translocation in neurons but C6-ceramide addition to neuronal cultures subsequently exposed to NMDA mimicked the neuroprotective effect of TNFalpha and, like TNFalpha, it was antagonized by cotreatment with nicotine. Therefore, the neuroprotective effects of nicotine against differing toxic assaults requires distinct nAChR subtypes and proceeds through intracellular pathways that overlap with similarly different mechanisms initiated by pro-inflammatory cytokines. These results provide insight into how nicotine imparts neuroprotection and modulates inflammatory responses.  相似文献   

13.
Intracellular recordings were performed in voltage-clamped Xenopus oocytes upon injection with a mixture of cDNAs encoding the beta3 and mutant alpha7 (L247Talpha7) neuronal nicotinic acetylcholine receptor (nAChR) subunits. The expressed receptors maintained sensitivity to methyllycaconitine and to alpha-bungarotoxin but exhibited a functional profile strikingly different from that of the homomeric L247Talpha7 receptor. The heteromeric L247Talpha7beta3 nAChR had a lower apparent affinity and a faster rate of desensitization than L247Talpha7 nAChR, exhibited nonlinearity in the I-V relationship, and was inhibited by 5-hydroxytryptamine, much like wild type alpha7 (WTalpha7) nAChR. Single channel recordings in cell-attached mode revealed unitary events with a slope conductance of 19 picosiemens and a lifetime of 5 ms, both values being much smaller than those of the homomeric receptor channel. Upon injection with a mixture of WTalpha7 and beta3 cDNAs, clear evidence was obtained for the plasma membrane assembly of heteromeric nAChRs, although ACh could not activate these receptors. It is concluded that beta3, long believed to be an orphan subunit, readily co-assembles with other subunits to form heteromeric receptors, some of which may be negative regulators of cholinergic function.  相似文献   

14.
alpha-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing alpha6 and alpha3 subunits. alpha-conotoxin PIA displays 75-fold higher affinity for rat alpha6/alpha3beta2beta3 nAChRs than for rat alpha3beta2 nAChRs. We have determined the three-dimensional structure of alpha-conotoxin PIA by nuclear magnetic resonance spectroscopy. The alpha-conotoxin PIA has an "omega-shaped" overall topology as other alpha4/7 subfamily conotoxins. Yet, unlike other neuronally targeted alpha4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I beta-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in alpha-conotoxins MII and GIC. By comparing the structure of alpha-conotoxin PIA with other functionally related alpha-conotoxins we suggest structural features in alpha-conotoxin PIA that may be associated with its unique receptor recognition profile.  相似文献   

15.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

16.
17.
Neuronal nicotinic acetylcholine receptors (nAChR) can regulate several neuronal processes through Ca2+-dependent mechanisms. The versatility of nAChR-mediated responses presumably reflects the spatial and temporal characteristics of local changes in intracellular Ca2+ arising from a variety of sources. The aim of this study was to analyse the components of nicotine-evoked Ca2+ signals in SH-SY5Y cells, by monitoring fluorescence changes in cells loaded with fluo-3 AM. Nicotine (30 microm) generated a rapid elevation in cytoplasmic Ca2+ that was partially and additively inhibited (40%) by alpha7 and alpha3beta2* nAChR subtype selective antagonists; alpha3beta4* nAChR probably account for the remaining response (60%). A substantial blockade (80%) by CdCl2 (100 microm) indicates that voltage-operated Ca2+ channels (VOCC) mediate most of the nicotine-evoked response, although the alpha7 selective antagonist alpha-bungarotoxin (40 nm) further decreased the CdCl2- resistant component. The elevation of intracellular Ca2+ levels provoked by nicotine was sustained for at least 10 min and required the persistent activation of nAChR throughout the response. Intracellular Ca2+ stores were implicated in both the initial and sustained nicotine-evoked Ca2+ responses, by the blockade observed after ryanodine (30 microm) and the inositoltriphosphate (IP3)-receptor antagonist, xestospongin-c (10 microm). Thus, nAChR subtypes are differentially coupled to specific sources of Ca2+: activation of nAChR induces a sustained elevation of intracellular Ca2+ levels which is highly dependent on the activation of VOCC, and also involves Ca2+ release from ryanodine and IP3-dependent intracellular stores. Moreover, the alpha7, but not alpha3beta2* nAChR, are responsible for a fraction of the VOCC-independent nicotine-evoked Ca2+ increase that appears to be functionally coupled to ryanodine sensitive Ca2+ stores.  相似文献   

18.
The heptapeptide IQTTWSR (IQ), recently reported as inhibitor of the beta-amyloid (Abeta) binding to nicotinic acetylcholine receptors (nAChrs), was docked to the homology model of the alpha7 nicotinic acetylcholine receptor. The most representative models were further subjected to molecular dynamics simulations. The data obtained here suggest that Abeta needs highly specific structural motifs to bind to the alpha7nAChR. These structural motifs are located principally in the upper and lower surroundings of loop C, including loop F and sheets beta1, beta2, beta6, beta9, and beta10 of the receptor. Overall, these results suggest that IQ can be mimicked by more bioavailable, stable compounds that would be helpful for the understanding of the Abeta binding site and its dynamics, and for the design of novel agents to be used as an effective alternative against Alzheimer's disease.  相似文献   

19.
Gymnodimines (GYMs) are phycotoxins exhibiting unusual structural features including a spirocyclic imine ring system and a trisubstituted tetrahydrofuran embedded within a 16-membered macrocycle. The toxic potential and the mechanism of action of GYM-A, highly purified from contaminated clams, have been assessed. GYM-A in isolated mouse phrenic hemidiaphragm preparations produced a concentration- and time-dependent block of twitch responses evoked by nerve stimulation, without affecting directly elicited muscle twitches, suggesting that it may block the muscle nicotinic acetylcholine (ACh) receptor (nAChR). This was confirmed by the blockade of miniature endplate potentials and the recording of subthreshold endplate potentials in GYM-A paralyzed frog and mouse isolated neuromuscular preparations. Patch-clamp recordings in Xenopus skeletal myocytes revealed that nicotinic currents evoked by constant iontophoretical ACh pulses were blocked by GYM-A in a reversible manner. GYM-A also blocked, in a voltage-independent manner, homomeric human alpha7 nAChR expressed in Xenopus oocytes. Competition-binding assays confirmed that GYM-A is a powerful ligand interacting with muscle-type nAChR, heteropentameric alpha3beta2, alpha4beta2, and chimeric alpha7-5HT(3) neuronal nAChRs. Our data show for the first time that GYM-A broadly targets nAChRs with high affinity explaining the basis of its neurotoxicity, and also pave the way for designing specific tests for accurate GYM-A detection in shellfish samples.  相似文献   

20.
Extracellular signal-regulated kinase (ERK) is activated in vivo in a number of brain areas by nicotine and other drugs of abuse. Here we show that nicotine stimulation of cultured mouse cortical neurons leads to a robust induction of ERK phosphorylation that is dependent on nicotine concentration and duration of exposure. Calcium/calmodulin-dependent protein kinase II activity is necessary for nicotine-induced ERK phosphorylation and neither cAMP-dependent protein kinase or protein kinase C appear to be involved. Activity of glutamate receptors, L-type voltage-gated calcium channels, and voltage-gated sodium channels are also required for nicotine-induced ERK phosphorylation. Nicotine-induced ERK phosphorylation was inhibited by high concentrations of mecamylamine, however it was not blocked by other broad nicotinic acetylcholine receptor (nAChR) inhibitors (including hexamethonium and chlorisondamine) or nAChR subtype selective inhibitors (such as methyllycaconitine, alpha-bungarotoxin, dihydro-beta-erythroidine, and alpha-conotoxin Au1B). In accord with these pharmacological results, nicotine-induced ERK phosphorylation was normal in primary cultures made from beta2 or alpha7 nAChR subunit knockout mice. The alpha3/beta4 nAChR agonist cytisine did not induce ERK phosphorylation suggesting that alpha3/beta4 nAChRs were not involved in this process. Taken together, these data define a necessary role for glutamatergic signaling and calcium/calmodulin-dependent protein kinase II in nicotine-induced ERK phosphorylation in cortical neurons and do not provide evidence for the involvement of classical nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号