首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To investigate the control of the timing in the epithelio-mesenchymal transformation of the neural crest into a migrating population, neural anlagen (neural tube plus crest) were isolated from 2-day quail embryos by proteases in the presence of Ca+ + and explanted onto substrates favourable for neural crest cell migration. Explants isolated before normal migration had commenced required 3–8 h in vitro before neural crest cells started migration, but explants obtained at migratory stages showed an immediate onset of migration. The schedule was similar to that expected in vivo. When pre-migratory neural anlagen were isolated by protease in Ca+ +- and Mg+ +-free (CMF) medium, or when the protease was followed by a brief (5 min) exposure to CMF medium, neural crest cell migration commenced without delay, and the cohesion of the anlagen was impaired. Ca+ +-free medium duplicated the effects of CMF, but neither Mg+ +-free medium nor CMF treatment before treatment with protease stimulated migration and reduced cohesion. Precocious neural crest cell migration and reduced cohesion also followed when neural anlagen of pre-migratory stages were cultured with membrane. Ca+ +-channel antagonists D600 and Nifedipine, without any exernal Ca+ +-depletion.The decrease of cohesion of these tissues is consistent with results in other systems where protease/Ca+ +-depletion inactivates Ca+ +-dependent cell-cell adhesive mechanisms. Therefore, we suggest that Ca+ +-dependent cell-cell adhesions play a part in preventing neural crest cells from migrating precociously and that the timed inactivation of this adhesion system normally helps trigger the onset of migration. The results with blockers of Ca+ +-channels suggest that Ca+ + levels may be involved in regulating this system.  相似文献   

2.
Summary The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15–40 nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin ( 3 nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker ( 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen.Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates. However, partially desulphated chondroitin sulphate (5mg/ml) strongly retarded the migration of NC cells.The in vivo and in vitro studies suggest that fibronectin may dictate the pathways of NC cell migration by acting as a highly preferred physical substrate. However, the utilization of these pathways may be reduced by the presence of proteoglycans bearing undersulphated chondroitin sulphate.Abbreviations NC neural crest - ECM extracellular material - GAG glycosaminoglycan - FN fibronectin - CIG cold insoluble globulin - TEM transmission electron microscopy - SEM scanning electron microscopy - DMEM-H HEPES buffered Dulbecco's modified Eagle's medium - FCS foetal calf serum - CEE chick embryo extract - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

3.
Summary Trunk-level neural anlagen bearing neural crest cells at the stage of initiation of migration were isolated from chick embryos and explanted in serum-free medium onto glass substrates which had previously been treated with extracellular materials. After 0.5–2 h incubation, the expiants were dislodged with a stream of culture medium and the substrate examined for adherent crest cells. Crest cells adhered to collagen gels, and adhered to and spread on adsorbed fibronectin; antiserum to fibronectin prevented adhesion to fibronectin but not to collagen gels. Air-dried collagen gels and collagen solutions were less adhesive, the adhesivity declining with longer drying time and lower collagen concentration. Crest cells adhered poorly to dried gelatin and not at all to adsorbed collagen. Fibronectin increased the adhesion to dried collagen and gelatin. Pretreatment of collagen gels with hyaluronate retarded adhesion. Hyaluronate pretreatment also retarded adhesion to adsorbed fibronectin but only when adsorbed collagen was also present. Pretreatment of collagen gels with the proteoglycan monomer from bovine nasal cartilage had no effect of the adhesion of crest cells, but the proteoglycan almost completely inhibited adhesion to adsorbed fibronectin, but only when absorbed collagen was also present. The results are discussed in terms of the control of migration of neural crest cells by extracellular materials.  相似文献   

4.
Summary Sympathetic cells (adrenergic neurons, SIF cells and chromaffin cells) and enteric neurons differentiate from migratory cells derived from the neural crest. The development of these cell types was studied in chorio-allantoic membrane (CAM) grafts, using combinations of tissues from domestic fowl embryos. Neural anlagen (neural tube and crest) of the vagal, cervico-thoracic and lumbo-sacral axial levels were equally capable of sympathetic differentiation, but this required somitic tissue for its significant expression. However, the vagal somites possessed only slight sympathogenic activity, thereby accounting for the negligible contribution of the vagal neural crest to the sympathetic nervous system.The same three levels of the neural anlage could furnish enteric neurons when combined directly with the aneuronal colo-rectum. However, the scale of this line of differentiation varied with the level of origin of the neural anlage, in contrast to the apparent equivalence in the ability to diffentiate as sympathetic cells. The density of enteric neurons in combinations with the vagal neural anlage was estimated as 60 times greater than the neuron density in combinations with the cervico-thoracic neural anlage. The lumbo-sacral neural anlage gave results similar to those of the cervico-thoracic level. Moreover, neural crest-derived pigment cells, positioned ectopically in the wall of the colo-rectum, were rare in combinations with the vagal neural anlage, but common in grafts with the other levels.When tested physiologically, the colo-rectum grown with the vagal neural anlage showed non-adrenergic, non-cholinergic inhibitory nervous activity in addition to the expected cholinergic excitatory responses. The neurons derived directly from vagal neural anlagen were similar to those that had reached the colo-rectum via their normal migratory pathways, when studied in terms of histological appearance, density of distribution and physiological responses.  相似文献   

5.
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (αN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of αN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that αN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo.  相似文献   

6.
Various cell adhesion molecules mediate the diverse functions of the vascular endothelium, such as cell adhesion, neutrophil migration, and angiogenesis. In order to identify cell adhesion molecules important for angiogenesis, we used anin vitromodel (Chalupowicz, Chowdhury, Bach, Barsigian, and Martinez,J. Cell Biol.130, 207–215, 1995) in which human umbilical vein endothelial cell monolayers are induced to form capillary-like tubes when a second gel, composed of either fibrin or collagen, is formed overlying the apical surface. In the present investigation, we observed that a monoclonal antibody directed against the first extracellular domain of human vascular endothelial cadherin (VE-cadherin, cadherin 5) inhibited the formation of capillary tubes formed between either fibrin or collagen gels. Moreover, when added to preformed capillary tubes, this antibody disrupted the capillary network. In contrast, monoclonal antibodies directed against the extracellular domain of N-cadherin, the αvβ3integrin, and PECAM-1 failed to inhibit capillary tube formation. During capillary tube formation, Western blot and RT-PCR analysis revealed no marked change in VE-cadherin expression. Immunocytochemical studies demonstrated that VE-cadherin was concentrated at intercellular junctions in multicellular capillary tubes. Thus, VE-cadherin plays a specific role in fibrin-induced or collagen-induced capillary tube formation and is localized at areas of intercellular contact where it functions to maintain the tubular architecture. Moreover, its function at tubular intercellular junctions is distinct from that at intercellular junctions present in confluent monolayers, since only the former was inhibited by monoclonal antibodies.  相似文献   

7.
8.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

9.
Cardiac neural crest cells (CNCC) migrate into the caudal pharynx and arterial pole of the heart to form the outflow septum. Ablation of the CNCC results in arterial pole malalignment and failure of outflow septation, resulting in a common trunk overriding the right ventricle. Unlike preotic cranial crest, the postotic CNCC do not normally regenerate. We applied the hedgehog signaling inhibitor, cyclopamine (Cyc), to chick embryos after CNCC ablation and found normal heart development at day 9 suggesting that the CNCC population was reconstituted. We ablated the CNCC, and labeled the remaining neural tube with DiI/CSRE and applied cyclopamine. Cells migrated from the neural tube in the CNCC-ablated, cyclopamine-treated embryos but not in untreated CNCC-ablated embryos. The newly generated cells followed the CNCC migration pathways, expressed neural crest markers and supported normal heart development. Finally, we tested whether reducing hedgehog signaling caused redeployment of the dorsal–ventral axis of the injured neural tube, allowing generation of new neural crest-like cells. The dorsal neural tube marker, Pax7, was maintained 12 h after CNCC ablation with Cyc treatment but not in the CNCC-ablated alone. This disruption of dorsal–ventral neural patterning permits a new wave of migratory cardiac neural crest-like cells.  相似文献   

10.
Neural crest cells separate from the neural epithelium in a region devoid of a basal lamina and migrate along pathways bordered by intact basal laminae. The distribution of basal laminae suggests that they might have an important role in the morphogenesis of the neural crest by acting as a barrier to migration. The experiments reported here have tested directly whether neural crest cells can penetrate a basal lamina. Isolated neural tubes, neural crest cells cultured for 24 hr, or pigmented neural crest cells were explanted onto human placental amnions from which the epithelium had been removed to expose the basal lamina. In no case did neural crest cells or crest derivatives penetrate the basal lamina to invade the underlying stroma. If crest cells were grown on the stromal side of the amnion, they invaded the connective tissue. Pigmented neural crest derivative and [3H]thymidine-labeled nonpigmented crest cells were also confronted with chick embryonic basal laminae by grafting the cells into the lumen of the neural tube at the axial levels where host crest migration had commenced. Most of the grafted cells invaded the neural epithelium and accumulated after 24 hr at the basal surface of the neural tube. A few crest cells escaped through the dorsal surface of the neural tube and entered the overlying ectoderm, presumably through the wound created during the grafting procedure. Some of these grafted cells, located initially by light microscopy, were examined at the higher magnification and resolution offered by the transmission electron microscope to determine the relationship of the grafted cells to the basal lamina. In 50% (14 total) of the cases, the crest cells never reached the basal lamina of the neural tube, but were trapped by cell junctions between the neural epithelial cells. Of the remaining grafted cells that were relocated in the TEM (50%, total 15) all were spread on the basal lamina, but were not seen penetrating it. Likewise, in the three cases where crest cells were found in the epidermal ectoderm, all were in contact with the basal lamina of the ectoderm but did not have any processes extending through it. In three cases, at the level of the light microscope, crest cells were found to extend through the basal surface of the neural tube. In all these instances, the cells followed the dorsal root nerve exiting through a region of the neural tube that is devoid of a basal lamina.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Nectins are Ca2+-independent immunoglobulin (Ig)-like cell–cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell–cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of many types of cell–cell junctions and cell–cell contacts, including cadherin-based adherens junctions (AJs) and synapses. Mode of action of nectins in the formation of AJs has extensively been investigated. Nectins form initial cell–cell adhesion and recruit E-cadherin to the nectin-based cell–cell adhesion sites. In addition, nectins induce activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of cadherin-based AJs through the reorganization of the actin cytoskeleton. Nectins furthermore heterophilically trans-interact with nectin-like molecules (Necls), other Ig-like CAMs, and assist or modify their various functions, such as cell adhesion, migration, and proliferation. We describe here the roles and modes of action of nectins as CAMs.  相似文献   

12.
The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e. loss of epithelial junctions and acquisition of pro-migratory properties, invades the entire embryo and differentiates into a wide diversity of terminal tissues. We have studied the implication of Rho pathways in NC development and previously showed that RhoV is required for cranial neural crest (CNC) cell specification. We show here that the non-canonical Wnt response rhoU/wrch1 gene, closely related to rhoV, is also expressed in CNC cells but at later stages. Using both gain- and loss-of-function experiments, we demonstrate that the level of RhoU expression is critical for CNC cell migration and subsequent differentiation into craniofacial cartilages. In in vitro cultures, RhoU activates pathways that cooperate with PAK1 and Rac1 in epithelial adhesion, cell spreading and directional cell migration. These data support the conclusion that RhoU is an essential regulator of CNC cell migration.  相似文献   

13.
We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum.  相似文献   

14.
Substrate dependence of cell migration from explanted neural tubes in vitro   总被引:1,自引:0,他引:1  
Summary Embryonic chick neural tubes containing neural crest cells were cultured in vitro on tissue culture plastic and collagen. Two parameters, the time of onset of cell migration from the neural tube and the rate of movement of the cell front away from the neural tube explant, were determined. On collagen, cell migration consistently began after four to six h in vitro, about five h prior to the onset of cell migration on tissue culture plastic. The identity of the migrating cells as neural crest cells is established by their eventual differentiation into melanocytes. Ablation experiments reveal that collagen also causes the early onset of migration of cells not of neural crest origin. These results provide in vitro support for the idea that extracellular materials may alter cell migratory behaviour in morphogenesis.Supported by PHS grant HD-05395 to Dr. James A. Weston and NIH Predoctoral Research Fellowship GM-47392 to Gerald D. Maxwell. The author thanks John Pintar for his permission to quote unpublished observations on the neural crest films and for helpful discussion, and Dr. Peter H. von Hippel for the gift of icthyocol  相似文献   

15.
The neural crest serve as an excellent model to better understand mechanisms of embryonic cell migration. Cell tracing studies have shown that cranial neural crest cells (CNCCs) emerge from the dorsal neural tube in a rostrocaudal manner and are spatially distributed along stereotypical, long distance migratory routes to precise targets in the head and branchial arches. Although the CNCC migratory pattern is a beautifully choreographed and programmed invasion, the underlying orchestration of molecular events is not well known. For example, it is still unclear how single CNCCs react to signals that direct their choice of direction and how groups of CNCCs coordinate their interactions to arrive at a target in an ordered manner. In this review, we discuss recent cellular and molecular discoveries of the CNCC migratory pattern. We focus on events from the time when CNCCs encounter the tissue adjacent to the neural tube and their travel through different microenvironments and into the branchial arches. We describe the patterning of discrete cell migratory streams that emerge from the hindbrain, rhombomere (r) segments r1-r7, and the signals that coordinate directed migration. We propose a model that attempts to unify many complex events that establish the CNCC migratory pattern, and based on this model we integrate information between cranial and trunk neural crest development.  相似文献   

16.
Crest cells individualized at the dorsal border of the neural tube, while they became surrounded by a fibronectin-rich matrix. Crest cells initiated their migration between the basement membranes of the neural tube and the ectoderm. In the vagal region, crest cells migrated in a fibronectin-rich environment between the ectoderm and the dermomyotome, very rapidly reaching the apex of the pharynx. In the trunk region, crest cells opposite the bulk of the somite accumulated at the junction between the somite, the neural tube, and the ectoderm; they resumed their migration at the onset of the dissociation of the somite into dermomyotome and sclerotome. Migration occurred more ventrally along the neural tube; nevertheless, the formation of the rapidly expanding sclerotome prevented crest cells from reaching the paranotochordal region. Thereafter, crest cells accumulated between the neural tube, the dermomyotome, and the sclerotome, where ultimately they formed the dorsal root ganglia. In contrast, cells opposite the intersomitic space did not encounter these obstacles and utilized a narrow pathway formed between the basement membranes of the two adjacent somites. This pathway allowed crest cells to reach the most ventral regions of the embryo very rapidly; they accumulated along the aorta to form the aortic plexuses, the adrenal medulla, and the sympathetic ganglia. The basic features of the migration pathways are (1) a strict delimitation by the fibronectin-rich basement membranes of the surrounding tissues, (2) a formation of space concomitant with the migration of crest cells, (3) a transient existence: continued migration is correlated with the presence of fibronectin, whereas cessation is correlated with its focal disappearance. The crest cells are characterized by their inability to traverse basement membranes and penetrate within tissues. We propose that the combination of active proliferation, unique motility properties, and the presence of narrow pathways are the major mechanisms ensuring correct directionality. Morphologically defined transient routes of migration along with developmentally regulated changes in the extracellular matrix and in the adhesive properties of crest cells are most probably involved in their stabilization in defined territories and their aggregation into ganglia.  相似文献   

17.
Summary The present investigation analyzes intercellular junctions in tissues with different developmental capacities. The distribution of junctions was studied inDrosophila embryos, in imaginal disks, and in cultures of disk cells that were no longer able to differentiate any specific pattern of the adult epidermis.The first junctions —primitive desmosomes andclose membrane appositions — already appear in blastoderm.Gap junctions are first detected in early gastrulae and later become more and more frequent.Zonulae adhaerentes are formed around 6 h after fertilization, whileseptate junctions appear in the ectoderm of 10-h-old embryos.Inwing disks of all stages studied (22–120 h), three types of junctions are found: zonulae adhaereentes, gap junctions, and septate junctions. Gap junctions, which are rare and small at 22 h, increase in number and size during larval development. The other types of junctions are found between all cells of a wing disk throughout development.All types of junctions that are found in normal wing disks are also present in theimaginal disk tissues cultured in vivo for some 15 years and in thevesicles of imaginal disk cells grown in embryonic primary cultures in vitro. However, gap junctions are smaller and in the vesicles less frequent than in wing disks of mature larvae.Thus gap junctions, which allow small molecules to pass between the cells they connect, are present in the early embryo, when the first developmental decisions take place, and in all imaginal disk tissues studied, irrespective of whether or not these are capable of forming normal patterns.  相似文献   

18.
Neural crest cells migrate along two pathways in the trunk: the ventral path, between the neural tube and somite, and the dorsolateral path, between the somite and overlying ectoderm. In avian embryos, ventral migration precedes dorsolateral migration by nearly 24 h, and the onset of dorsolateral migration coincides with the cessation of ventral migration. Neural crest cells in the ventral path differentiate predominantly as neurons and glial cells of the peripheral nervous system, whereas those in the dorsolateral path give rise to the melanocytes of the skin. Thus, early- and late-migrating neural crest cells exhibit unique morphogenetic behaviors and give rise to different subsets of neural crest derivatives. Here we present evidence that these differences reflect the appearance of specified melanocyte precursors, or melanoblasts, from late- but not early-migrating neural crest cells. We demonstrate that serum from Smyth line (SL) chickens specifically immunolabels melanocyte precursors, or melanoblasts. Using SL serum as a marker, we first detect melanoblasts immediately dorsal and lateral to the neural tube beginning at stage 18, which is prior to the onset of dorsolateral migration. At later stages every neural crest cell in the dorsolateral path is SL-positive, demonstrating that only melanoblasts migrate dorsolaterally. Thus, melanoblast specification precedes dorsolateral migration, and only melanoblasts migrate dorsolaterally at the thoracic level. Together with previous work (Erickson, C. A., and Goins, T. L.,Development121, 915–924, 1995), these data argue that specification as a melanoblast is a prerequisite for dorsolateral migration. This conclusion suggested that the delay in dorsolateral migration (relative to ventral migration) may reflect a delay in the emigration of melanogenic neural crest cells from the neural tube. Several experiments support this hypothesis. There are no melanoblasts in the ventral path, as revealed by the absence of SL-positive cells in the ventral path, and neural crest cells isolated from the ventral path do not give rise to melanocytes when explanted in culture, suggesting that early, ventrally migrating neural crest cells are limited in their ability to differentiate as melanocytes. Similarly, neural crest cells that emigrate from the neural tubein vitroduring the first 6 h fail to give rise to any melanocytes or SL-positive melanoblasts, whereas neural crest cells that emigrate at progressively later times show a dramatic increase in melanogenesis under identical culture conditions. Thus, the timing of dorsolateral migration at the thoracic level is ultimately controlled by the late emigration of melanogenic neural crest cells from the neural tube.  相似文献   

19.
Development of cilia in embryos of the turbellarian Macrostomum   总被引:3,自引:3,他引:0  
Seth Tyler 《Hydrobiologia》1981,84(1):231-239
Electron microscopy of Macrostomum hystricinum raised in culture shows that ciliogenesis in the worm's epidermal blastomeres begins in embryos 39–41 h old with kinetosomal and de novo genesis of presumptive basal bodies, which are morphologically distinguishable from centrioles of the mitotic apparatus, and proceeds by the migration of basal bodies to the apical plasma membrane of the cells and their production there of ciliary axonemes by an age of 51–53 h when the bastomeres emerge between yolk cells on the embryo's surface. Ciliogenesis continues throughout development with the addition of cilia virtually one by one to the expanding epidermal cells' surfaces. At no time in ciliogenesis are stages seen that might show derivation of these multiciliated cells from the primitive monociliated cell type presumably present in the ancestors of the Turbellaria.  相似文献   

20.
In the submerged trichomes of floating-moss (Salvinia auriculataAubl.) and the roots of the higher water plant Trianea bogotensisKarst., the dependence of the electrical resistance of intercellular junctions on the presence of the agents that destroy microfilaments (cytochalasin B) and microtubules (colchicine) was investigated using the microelectrode technique. The resistance of the junctions (R c) was estimated taking into account the input resistance and the coefficient of intercellular electrical communication. Should the cells be connected via symplast, R cwill describe the resistance of plasmodesmata. Cytochalasin B (3–30 g/ml) reversibly changed R cduring the first minutes after application. The extent of the change depended on the concentration of the inhibitor; its character of action depended on the initial strength of intercellular communication. When the initial conductance of the contact was high, cytochalasin B elevated the resistance; when it was low, the inhibitor decreased it. In all the experiments, cytochalasin B reduced the input resistance (R i) that suggests the dependence of plasma membrane resistance on actin cytoskeleton. The effect of colchicine (0.1–1.0 mM) on R iand R cwas observed only when the cellular membrane was hyperpolarized or after a prolonged action of the inhibitor (for about 0.5 h). It was concluded that the electrical conductance of plasmodesmata and plasma membrane depended on the state of actin cytoskeleton. A complex and probably mediated interaction of microtubules with the processes affecting these characteristics of the cells was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号