共查询到20条相似文献,搜索用时 0 毫秒
1.
Prepubertal (28-30 days old) female rats were infused s.c. over a 60-h period with a purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH specific activity 8.4 times that of NIH-FSH-S1 and luteinizing hormone (LH) specific activity less than 0.005 times that of NIH-LH-S1, based on radioreceptor assays. When the FSH infusion rate of this preparation was increased over the range of 0.5-2 units/day (mg NIH-FSH-S1 equivalent), an all-or-none response was observed, with the threshold dose for superovulation being between 1 and 2 units/day. Eleven of twelve rats receiving the 2 units/day dose ovulated a mean +/- SEM of 67 +/- 8 oocytes on the morning of the third day after the beginning of FSH infusion. Addition of human chorionic gonadotrophin (hCG), as a source of LH activity, to a subthreshold (1 U/day) FSH infusion rate resulted in 20% of rats ovulating at an hCG dosage of 50 mIU/day; increasing the hCG infusion to 200 mIU/day concomitant with the subthreshold FSH infusion rate increased ovulation rate to a mean of 69 +/- 8/rat, with 100% of rats ovulating. To determine the effect of varying both FSH infusion rates and LH:FSH ratios, FSH was infused at several rates, with hCG added to give varying hCG:FSH ratios for each FSH infusion rate. Administration of hCG alone was ineffective in causing ovulation except at the highest infusion rates. Adding hCG to FSH to reach a ratio of 0.2 IU hCG/U FSH significantly increased the superovulatory response to an intermediate, 1 U/day FSH dose, but not to the low, 0.5 U/day dose.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Female rats injected with a single dose of 2 mg estradiol valerate (EV) develop anovulatory acyclicity characterized by persistent vaginal cornification and the formation of multiple large cystic follicles on the ovaries. In order to determine if these effects of EV are accompanied by changes in ovarian and/or pituitary function, the following studies were conducted. Ovarian androgen production was determined by the measurement at 4, 5 and 6 weeks after EV treatment of circulating dehydroepiandrosterone, androstenedione and testosterone. The capacity of the polycystic ovary to ovulate in response to luteinizing hormone releasing hormone (LHRH) stimulus was assessed. Ovarian histology was examined at the termination of the study (9 weeks after EV treatment). Pituitary function was assessed 9 weeks after the EV treatment by examining the acute changes in plasma luteinizing hormone (LH) concentration in response to a double pulse of LHRH. Plasma concentrations of the androgens were unchanged over the 3-week sampling period and were similar to those found in sesame-oil-treated normal cycling control rats. The ovaries from EV-treated animals were smaller than those of controls and the cystic follicles exhibited marked thecal hypertrophy and attenuation of the granulosa cell layer. The basal plasma LH concentration at 9 weeks after EV treatment were significantly lower than in proestrus controls and plasma concentrations of LH elicited by LHRH pulses was significantly lower than in controls. The relative increase in plasma LH following the LHRH stimulus was, however, greater in the EV-treated animals than in controls. In spite of the diminished LH surge elicited in response to LHRH, the EV-treated animals ovulated as indicated by the presence of fresh corpora lutea on the ovaries. These results indicate that androgens are not responsible for the polycystic ovarian condition in this system and that the polycystic ovary is capable of ovulatory function when appropriately stimulated. 相似文献
3.
M Shaykh W J LeMaire H Papkoff T E Curry J H Sogn R D Koos 《Biology of reproduction》1985,33(3):629-636
Using the model of the isolated perfused rat ovary, we have found that highly purified ovine follicle-stimulating hormone (FSH) preparations cause ovulation and that this effect is not due to luteinizing hormone (LH) contamination. Ovine FSH-13 at a concentration of 1.5 mU/ml induced ovulations in all perfused ovaries (8.8 +/- 2.3 ovulations/ovary), as did a more purified preparation, ovine FSH-211B, at concentrations of 0.5 mU/ml (15.0 +/- 6.4 ovulations/ovary) and 5 mU/ml (11.3 +/- 2.6 ovulations/ovary). This ovulation-inducing effect of FSH is accompanied by a marked stimulation of estradiol levels in the perfusion medium without stimulation of progesterone levels. Furthermore, a purified rat FSH preparation (15 mU/ml) also induced ovulation in all ovaries (13.8 +/- 2.2 ovulations/ovary) as well as a stimulation of both estradiol and progesterone in the medium. These data clearly confirm the direct ovulatory effect of FSH on the ovary. 相似文献
4.
5.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion. 相似文献
6.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH. 相似文献
7.
8.
Ottinger MA Kubakawa K Kikuchi M Thompson N Ishii S 《Experimental biology and medicine (Maywood, N.J.)》2002,227(9):830-836
During aging, the male Japanese quail exhibits a loss of fertility, increased morphological abnormalities in the testes, and a higher incidence of Sertoli cell tumors. Although there is a coincident loss of reproductive behavior, plasma androgen levels remain high until testicular regression occurs in association with senescence. The purpose of this study was to compare mean specific binding of chicken luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as a measure of testicular receptors during identified stages during aging. Males were categorized according to age (young = 9 months, middle aged = 24 months, or old = 36+ months) and sexual behavior (active or inactive). Testicular samples were collected immediately after perfusion with 4% paraformaldehyde from the following groups: young active (n = 8), young photoregressed (n = 5), young photoregressed plus testosterone implant (n = 4), middle-aged active (n = 8), middle-aged inactive (n = 4), old inactive (n = 5), and old inactive plus testosterone implant (n = 6). A crude plasma membrane fraction was prepared from the testes of each bird and an aliquot deriving from 10 mg of testicular tissue was used for binding assay. Specific binding of labeled LH or FSH was expressed as percentage of total radioactive hormone. Results showed significant (P < 0.05) age-related decreases in both FSH and LH receptor numbers. The highest FSH binding was found in young and middle-aged active males, with low binding in old inactive males. Testicular LH binding decreased during aging, with a sharp decrease in middle-aged males, which was similar to old males. Testosterone implants weakly stimulated FSH and LH binding in old males. Both LH and FSH binding decreased in photoregressed young males. However, testosterone implants stimulated increased LH binding, but did not affect FSH binding in young photoregressed males. These results provide evidence for separate regulation of testicular LH and FSH receptors, with testosterone stimulation of LH receptor, but not FSH receptor number in young males. However, during aging there appears to be a loss of this response, potentially because of the reduced efficacy of testosterone stimulation, thereby implying a diminished capacity for response with aging. 相似文献
9.
R J Bourdage T A Fitz G D Niswender 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1984,175(4):483-486
Experiments were conducted in vitro on ovine small luteal cells to evaluate their steroidogenic response to ovine luteinizing hormone (oLH) and human chorionic gonadotropin (hCG) administered continuously throughout the experimental period or as a 15-min pulse. Both oLH and hCG stimulated a significant increase in progesterone secretion (P less than 0.001) by small luteal cells. Human chorionic gonadotropin administered continuously or as a pulse maintained progesterone secretion at 40-55% of experimental maximum at least 6 hr while oLH-stimulated progesterone secretion declined to basal levels by 4 hr after a 15-min pulse or declined to 25% of the experimental maximum within 6 hr under constant stimulation. The responses of small luteal cells to oLH and hCG were found to differ (P less than 0.001). The sustained progesterone secretion of luteal cells in response to a pulse of hCG may be due to longer residence of occupied receptor complex on the cell membrane. In contrast, the decline in oLH stimulated progesterone secretion, even when hormone is continuously present in the medium, may be related to a rapid internalization of receptor-hormone complexes and down-regulation of receptors. 相似文献
10.
Dynorphin and other proenkephalin B-derived peptides exist in the rat adenohypophysis in high concentrations and may have important roles in endocrine function. At the cellular level, dynorphin peptides are colocalized with the gonadotropins in at least a subpopulation of gonadotrophs. In this study dynorphin-containing particles were compared with secretory granules containing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by means of differential centrifugation and sucrose density gradient centrifugation. When anterior pituitary homogenate of male rats was subjected to differential centrifugation, about 70% of both dynorphin- and LH-containing particles sedimented at 30,000 x g. LH granules and dynorphin-containing particles comigrated in continuous sucrose density gradients both under nonequilibrium conditions as well as when equilibrium was attained. FSH storage granules were found to sediment in slightly denser fractions, with substantial overlap. Hence, dynorphin-containing particles and gonadotropin-containing granules exhibit similar characteristics. These hormones may, therefore, be colocalized also at the subcellular level or stored in separate but similar vesicles. 相似文献
11.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon. 相似文献
13.
14.
15.
16.
Previous work with female rats showed that serum levels of follicle-stimulating hormone (FSH) are suppressed by gonadotropin-releasing hormone (GnRH) antagonists less than are levels of serum luteinizing hormone (LH), suggesting a lesser dependency of FSH on GnRH stimulation. The differential regulation of LH and FSH is known to have some aspects that are sexually asymmetrical, and it was of interest to see if males also show differential gonadotropin suppressibility after injection of an antagonist to GnRH. Male rats were prepared for serial sampling 4 wk after castration. After a blood sample was removed at Time Zero, [Ac-3-Pro1, pF-D-Phe2, -D-Trp3,6]-GnRH (Antag) was injected subcutaneously in oil; doses were 0, 4, 20, 100, 500, and 2500 micrograms. Blood was sampled at 2, 5, 12, 24 and 36 h postinjection. All doses above 4 micrograms had lowered LH levels by 2 h, and LH remained suppressed for 12 to 24 h at the three higher doses. By contrast, serum FSH was unaffected by any dose at 5 h, and was only marginally suppressed by the highest doses thereafter. As in females, therefore, FSH secretion in male rats appears not to be as dependent on GnRH as is LH secretion. 相似文献
17.
18.
Ten intact and hypophysial stalk-transected (HST), prepuberal Yorkshire gilts, 112–160 days old, were subjected to a pulsatile infusion regimen of luteinizing hormone-releasing hormone (LHRH) to investigate secretion profiles of luteinizing hormone (LH) and ovarian function. A catheter was implanted in a common carotid artery and connected to an infusion pump and recycling timer, whereas an indwelling external jugular catheter allowed collection of sequential blood samples for radioimmunoassay of LH and progesterone. In a dose response study, intracarotid injection of 5 μg LHRH induced peak LH release (5.9 ± 0.65 ng/ml; mean ± SE) within 20 min, which was greater (P < 0.001) than during the preinjection period (0.7 ± 0.65 ng/ml). After HST, 5 μg LHRH elicited LH release in only one of three prepuberal gilts. Four intact animals were infused with 5 μg LHRH (in 0.1% gel phosphate buffer saline, PBS) in 0.5-ml pulses (0.1 ml/min) at 1.5-h intervals continuously during 12 days. Daily blood samples were obtained at 20-min intervals 1 h before and 5, 10, 20, 40, 60 and 80 min after one LHRH infusion. Plasma LH release occurred in response to pulsatile LHRH infusion during the 12-day period; circulating LH during 60 min before onset of LHRH infusion was 0.7 ± 0.16 ng/ml compared with 1.3 ± 0.16 ng/ml during 60 min after onset of infusion (P < 0.001). Only one of four intact gilts ovulated, however, in response to LHRH infusion. This animal was 159 days old, and successive estrous cycles did not recur after LHRH infusion was discontinued. Puberal estrus occurred at 252 ± 7 days in these gilts and was confirmed by plasma progesterone levels. These results indicate that intracarotid infusion of 5 μg LHRH elicits LH release in the intact prepuberal gilt, but this dosage is insufficient to cause a consistent response after HST. 相似文献
19.