首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism of 4-[4-14C]androstene-3,17-dione, 4-[4-14C]pregnene-3,20-dione, 5alpha-[4-14C]androstane-3alpha,17beta-diol, [4-14C]cholesterol, 7alpha-hydroxy-4-[6beta-3H]cholesten-3-one, 5beta-[7beta-3H]cholestane-3alpha,7alpha-diol and [3H]lithocholic acid was studied in the microsomal fraction of livers from control and orotic acid-treated male rats. 2. As a result of the treatment the orotic acid-fed rats had fatty livers and subnormal concentrations of cholesterol and triglycerides in serum. 3. The 6beta- and 7alpha-hydroxylation of 4-androstene3,17-dione, and the 2alpha-, 2beta- and 18-hydroxylation of 5alpha-androstane-3alpha,17beta-diol, and the 5alpha-reduction of 4-androstene-3,17-dione and 4-pregnene-3,20-dione were decreased by 40--50% in orotic acid-fed rats. Other oxidative and reductive reactions of the steroid hormones were not significantly affected. 4. The 12alpha-hydroxylation of 7alpha-hydroxy-4-cholesten-3-one was decreased by about 50%, whereas the 7alpha-hydroxylation of cholesterol and the 26-hydroxylation of 5beta-cholestane-3alpha,7alpha-diol were not significantly decreased. The 6beta-hydroxylation of lithocholic acid was stimulated by 40%. 5. The results are discussed in relation to present knowledge of the heapatic drug-metabolizing enzymes and to the recent findings of an abnormal bile acid metabolism in liver disease.  相似文献   

2.
The metabolism of [4-14C]progesterone and [4-14C]testosterone by slices of the nasal mucosa from rats was studied. As shown by gas chromatography-mass spectrometry there was a preferential formation of reduced progesterone-metabolites (5 alpha-pregnane-3,20-dione, 3 alpha- and 3 beta-hydroxy-5 alpha-pregnane-20-one, 20 alpha- and 20 beta-hydroxypregn-4-en-3-one, 2 alpha,3 alpha-dihydroxy-5 alpha-pregnane-20-one, 3 alpha,16 alpha-dihydroxy-5 alpha-pregnane-20-one) and reduced testosterone-metabolites (4-androstene-3,17-dione, 5 alpha-dihydrotestosterone, 3 alpha-hydroxy-5 alpha-androstane-17-one, and 5 alpha-androstane-3 alpha, 17 beta-diol, 2 alpha-hydroxy-5 alpha-dihydrotestosterone, 5 alpha-androstane-2 alpha,3 alpha, 17 beta-triol) indicating the presence of 5 alpha-reductase, 3 alpha-, 3 beta-, 17 beta-, 20 alpha- and 20 beta-hydroxysteroid oxidoreductase activities in this tissue. Progesterone-metabolites hydroxylated at positions 2 alpha, 6 alpha, 6 beta, 15 alpha and 16 alpha and testosterone-metabolites hydroxylated at positions 1 beta, 2 alpha, 6 beta, 15 beta and 16 alpha were also identified, indicating the presence of several steroid hydroxylases in the nasal mucosa. Autoradiography of the nasal region of rats injected with [4-14C]progesterone or [4-14C]testosterone showed a selective localization of radioactivity in the mucosa covering the olfactory region of the nasal cavity.  相似文献   

3.
T K Kwan  C Orengo  D B Gower 《FEBS letters》1985,183(2):359-364
The biosynthesis of testosterone and 4-androstene-3,17-dione and some 16-androstenes has been studied in homogenates or subcellular fractions of testes from 3-week-old Landrace piglets. Pregnenolone was converted into 5,16-androstadien-3 beta-ol, 4,16-androstadien-3-one, 5 alpha-androst-16-en-3-one and 5 alpha-androst-16-en-3 alpha- and 3 beta-ols, but the quantities were some 50 times less than those formed in the mature boar testis. Androgens were also formed in the microsomal fractions but the quantities of 4-androstene-3,17-dione (from side-chain cleavage of 17-hydroxyprogesterone) and of testosterone (from reduction of 4-androstene-3,17-dione) were 50-70 times lower than in the adult animal. The kinetic parameters and cofactor preference of the 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were determined in the cytosolic, microsomal and mitochondrial fractions of neonatal porcine testes.  相似文献   

4.
[16 alpha-2H]Pregnenolone was synthesized by catalytic deuteriation of 3 beta-hydroxy-5,16-pregnadien-20-one followed by base-catalyzed back exchange of the 17 alpha-2H atom, and [16 beta-2H]pregnenolone by catalytic hydrogenation of 3 beta-hydroxy-5,16-[16-2H]pregnadien-20-one, which had been synthesized from [16,16-2H]dehydroepiandrosterone. The labelled pregnenolones were incubated separately with the microsomal fraction of boar testis. The metabolites were analyzed by gas chromatography-mass spectrometry, and the isotope compositions of the following six metabolites were determined: 17-hydroxypregnenolone, dehydroepiandrosterone, 5-androstene-3 beta,17 alpha-diol, 5-androstene-3 beta,17 beta-diol,16 alpha-hydroxypregnenolone and 5,16-androstadien-3 beta-ol. The first four metabolites derived either from [16 alpha-2H]- or from [16 beta-2H]pregnenolone showed essentially the same isotope compositions as those of their respective precursors. The 16 alpha-hydroxypregnenolone and the 5,16-androstadien-3 beta-ol biosynthesized from [16 alpha-2H]pregnenolone lost the 2H label, while the same metabolites biosynthesized from [16 beta-2H]pregnenolone retained the albel. The result shows that the 16 alpha-hydrogen is stereospecifically removed with the retention of the 16 beta-hydrogen in the biosynthesis of 5,16-androstadien-3 beta-ol.  相似文献   

5.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

6.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

7.
In embryos of many reptiles, the sexual differentiation of gonads is temperature-dependent. In the turtle Emys orbicularis, all individuals become phenotypic males at 25 degrees C, whereas 100% phenotypic females are obtained at 30 degrees C. Steroid metabolism in embryonic gonads was studied at both temperatures, during and after the thermosensitive period for sexual differentiation. Pools of gonads were incubated for various times, with 3 beta-hydroxy-5-pregnen-20-one (pregnenolone), progesterone, dehydroepiandrosterone or 4-androstene-3,17- dione as substrates. The analysis of metabolites combined two successive chromatographies (HPLC and TLC) and autoradiography. Conversion of pregnenolone to progesterone and of dehydroepiandrosterone to 4-androstene-3,17-dione was more important in testes at 25 degrees C than in ovaries at 30 degrees C. In ovaries, a large amount of 5-pregnene- 3 beta,20 beta-diol was formed from pregnenolone, and 5-androstene-3 beta,17 beta-diol was produced from dehydroepiandrosterone. In both testes and ovaries, 5 alpha-pregnane and 5 alpha-androstane derivatives were the main metabolites obtained from progesterone and 4-androstene-3,17-dione, respectively. Progesterone was also converted to 20 beta-hydroxy-4-pregnen-3-one. Dehydroepiandrosterone and 4-androstene-3,17-dione were also metabolized into 11 beta-hydroxy-4-androstene-3,17-dione (only in testes), testosterone, 11 beta,17 beta-dihydroxy-4-androstene-3-one, 17 beta-hydroxy-4-androstene-3,11-dione (low amounts in testes, traces in ovaries), 17 alpha-hydroxy-4-androstene-3-one, estrone and estradiol-17 beta (traces).  相似文献   

8.
1. 5-Cholesten-3-one was shown to be an intermediate in the conversion of cholesterol into 4-cholesten-3-one by Nocardia cholesterol oxidase. 2. The absence of a C-17 side chain from 5-androstene-3,17-dione slightly increased the Vmax. of the isomerase activity relative to 5-cholesten-3-one (1.7-fold), but greatly increased the Km. 3. Incubations of [4alpha-2H]-and [4beta-2H]-cholesterol with cholesterol oxidase showed that the 4beta-hydrogen atom can be transferred to the 6beta-position. However, incubations of cholesterol, 5-cholesten-3-one and 4-cholesten-3-one with the enzyme in 2H2O led to some incorporation of 2H into the 4-cholesten-3-one products, mostly at position 6beta. 4. Both the isomerase and the oxidase activities of cholesterol oxidase were inhibited by 5,10-seco-19-nor-5-cholestyne-3,10-dione.  相似文献   

9.
M Numazawa  A Mutsumi  M Ogata  Y Osawa 《Steroids》1987,49(4-5):247-257
3 beta,16 alpha,19-Trihydroxy-5-androsten-17-one and 16 alpha,17-dihydroxy-4-androstene-3,17-dione were synthesized from the 5 alpha-bromo-6 beta,19-epoxy-17-ketone derivative 1, using the bromination at C-16 alpha of the 17-ketone 1 and the controlled alkaline hydrolysis of the 16 alpha-bromo-17-ketones 2 and 11 as key reactions. Zinc dust reductive cleavage of the 6 beta,19-epoxy-16 alpha-hydroxy-17-ketones 4 and 12, produced by controlled hydrolysis, gave the corresponding 19-alcohol derivatives 6 and 14, which were rearranged to the 17 beta-hydroxy-16-ketones 7 and 15 when treated with sodium hydroxide. The 3 beta,16 alpha,17 beta,19-tetrol 8 was obtained from the 16 alpha-ketol 6 by reaction with sodium borohydride.  相似文献   

10.
In view of the uterine action of androgens we have investigated in vitro the metabolism of [4-14C]-testosterone in uterine tissue of ovariectomized rats. After purification of the extracts on Amberlite XAD-2 the metabolites have been isolated by gel. Five metabolites were isolated and identified during these incubation studies: 4-androstene 3,17-dione, 17beta-hydroxy-5alpha-androstan-3-one, 5 alpha-androstane-3alpha17beta-diol, 4-androstene-3 beta, 17beta-diol and 4-androstene-3alpha, 17beta-diol. Furthermore, two polar C19O3-metabolites and one isopolar to 5 alpha-androstane-3, 17-dione have also been detected. The metabolites were characterized by radioactive gas chromatogrphy, and determination of the relative specific activity in the eluates of Sephadex column chromatography. The identification of allylic alcohols was complemented by their oxidation to 4-androstene-3,17-dione. The present data show that activity of 17beta,3alpha- and 3beta-hydroxysteroid-oxidoreductase and 5alpha-ring-reductase are involved in the metabolism of testosterone in vitro in the rat uterus. The very low 5 alpha-reductase activity under the experimental conditions used in this work explains the formation of allylalcohols as the principal metabolites of testosterone in the rat uterus.  相似文献   

11.
The oxidation of dehydroepiandrosterone (DHEA), 4-androstene-3, 17-dione, and estrone with Streptomyces roseochromogenes NRRL B-1233 was studied. The oxidation products were isolated and identified as as 16alpha-hydroxy-DHEA, 16alpha-hydroxy-4-androstene-3,17-dione and 16alpha-hydroxyestrone. The yields of these three products were 85%, 41% and 18%, respectively. This indicates the substrate stereospecificity of 16alpha-hydroxylase of the organism. An interrelationship between cell growth and the formation of 16alpha-hydroxylated steroid was observed in any case. For formation of 16alpha-hydroxy-DHEA, 16alpha-hydroxylase showed good activity at DHEA concentration of 3.47 x 10(-4)M. In the case of DHEA, 16alpha-hydroxy-4-androstene-3,17-dione and 5-androstene-3beta, 16alpha, 17beta-triol were obtained after the yield of 16alpha-hydroxy-DHEA reached the maximum yield for about 30 hr. The oxidation pathway of DHEA is discussed.  相似文献   

12.
L A Sheean  R A Meigs 《Steroids》1983,41(2):225-241
Human placental microsomes converted epitestosterone to estradiol-17 alpha at rates of 23-48 pmol/min X mg protein with a Km of 113 microM. Activity was inhibited 70-90% by concentrations of CO, metyrapone, n-octylamine, 7,8-benzoflavone and 7-ethoxycoumarin which had no effect on the aromatization of 4-androstene-3, 17-dione. Conversely, cyanide and azide were more effective inhibitors of the conversion of the latter androgen. A variety of neutral steroids inhibited the aromatization of epitestosterone with 19-norsteroids being particularly effective, but competitive effects could not be demonstrated. Both 17 beta-hydroxy-4-estren-3-one and 16 alpha-hydroxy-4-androstene-3,17-dione caused a mixed inhibition. A number of phenolic steroids were also inhibitory with 16-oxo compounds being particularly effective. Inhibition by estrone was non-competitive (Ki = 16 microM). The aromatization of epitestosterone resembles placental microsomal oxidase activities against estrone and benzo [a]pyrene in its inhibitor specificity and epitestosterone may be the native substrate for an oxidase also active in the metabolism of aromatic xenobiotic chemicals.  相似文献   

13.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

14.
A method for the convenient synthesis of the recently isolated allylic gonadal steroids, 3 alpha-hydroxy-4-pregnen-20-one (3 alpha-dihydroprogesterone; 3 alpha-DHP) and 3 alpha-hydroxy-4-androsten-17-one (3 alpha-HA), was developed using 4-pregnene-3,20-dione (progesterone) and 4-androstene-3,17-dione as substrates and potassium trisiamylborohydride (KS-Selectride) as reducing agent. Similar reactions were also used for the reduction of 5 alpha-pregnane-3,20-dione to 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha-HP). The yields were about 15%, 50%, and greater than 90% for 3 alpha-DHP, 3 alpha-HA and 3 alpha-HP, respectively. Structures of the products, including the 3 beta-isomers and the 17 alpha-epimer, formed in these reactions were determined by NMR and mass spectroscopic methods.  相似文献   

15.
Two species of Penicillium--P. chrysogenum and P. crustosum--were cultured in presence of [3H]testosterone as a substrate. Both species were shown to reduce the 4,5-double bond in testosterone to give dihydrotestosterone (DHT). The steroids produced were 5alpha-dihydrotestosterone, DHT, 3alpha-hydroxy-5beta-androstan-17-one, 3alpha-hydroy-5alpha-androstan-17-one, 4-androstene-3,17-dione, and 5alpha-androstane-3,17-dione. These products implicate the presence of the 5alpha-reductase, with maximal activity at pH 6 and 8, in both species of Penicillium. The presence of DHT in the growth medium and not in the mycelium suggests that DHT is excreted into the medium.  相似文献   

16.
Microsomal fractions obtained from testes of 3-week-old piglets have been incubated, separately, with progesterone, 17-hydroxyprogesterone, 5-pregnene-3 beta,20 beta-diol, 16 alpha-hydroxypregnenolone, 5-androstene-3 beta,17 alpha-diol and dehydro-epiandrosterone. The metabolites, after derivatization, have been separated by capillary gas chromatography and identified by mass spectrometry. Quantification was by selected ion monitoring. Progesterone was shown to be 17-hydroxylated and also converted into 4,16-androstadien-3-one (androstadienone). The major metabolite of 17-hydroxyprogesterone was 4-androstene-3,17-dione (4-androstenedione), but little, if any, androstadienone was formed, indicating that this particular biosynthesis did not require 17-hydroxylation. The metabolites of 5-pregnene-3 beta, 20 beta-diol were found to be 17-hydroxypregnenolone, 3 beta-hydroxy-5,16-pregnadien-20-one (16-dehydropregnenolone) and 5,16-androstadien-3 beta-ol. Dehydroepiandrosterone and 5-androstene-3 beta,17 alpha-diol were interconvertible but neither steroid acted as a substrate for 16-androstene formation. However, dehydroepiandrosterone was metabolized to a small quantity of 4-androstenedione. Under the conditions used, no metabolites of 16 alpha-hydroxypregnenolone could be detected. The present results, together with those obtained earlier, indicate that the neonatal porcine testis has the capacity to synthesize weak androgens, mainly by the 4-en-3-oxo steroid pathway. Although 16-androstenes cannot be formed from C19 steroids, progesterone served as a substrate and may be converted directly to androstadienone, without being 17-hydroxylated first. The pathway to 5,16-androstadien-3 beta-ol, however, involves 17-hydroxypregnenolone and 16-dehydropregnenolone as intermediates.  相似文献   

17.
Kim E  Ma E 《Steroids》2007,72(4):360-367
The chemoselectivity of rigid cyclic alpha,beta-unsaturated carbonyl group on the reducing agents was influenced by the ring size and steric factor. Cholesterol (cholest-5-en-3beta-ol) and dehydroepiandrosterone (DHEA) were oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione. They were reduced with NaBH(4), lithium tri-sec-butylborohydride (l-Selectride), LiAlH(4), 9-borabicyclo[3.3.1]nonane (9-BBN), lithium triethylborohydride (Super-hydride), and BH(3) x (CH(3))(2)S in various conditions, respectively. Reduction of 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione by NaBH(4) (4 equiv.) produced 4,6-cholestadien-3beta-ol and 4,6-androstadiene-3beta,17beta-diol, respectively. Reduction by l-Selectride (12 equiv.) afforded 4,6-cholestadien-3alpha-ol and 4,6-androstadiene-3alpha,17beta-diol, chemoselectively. Reaction with Super-hydride (12 equiv.) produced 4,6-cholestadien-3-one and 3-oxo-4,6-androstadien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by 9-BBN (14 equiv.) produced 1,4,6-cholestatrien-3alpha-ol, but 1,4,6-androstatriene-3,17-dione was not reacted with 9-BBN in the reaction conditions. Reaction of LiAlH(4) (6 equiv.) formed 4,6-cholestadien-3beta-ol and 3-oxo-1,4,6-androstatrien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by BH(3) x (CH(3))(2)S (11 equiv.) gave cholestane as major compound and unlike reactivity of cholesterol, 1,4,6-androstatriene-3,17-dione by 8 equiv. of BH(3) x (CH(3))(2)S formed 3-oxo-1,4,6-androstatrien-17beta-ol. LiAlH(4) and BH(3) x (CH(3))(2)S showed relatively low chemoselectivity.  相似文献   

18.
Embryos of Xenopus laevis, Rana temporaria and Triturus vulgaris exposed to radioactive pregnenolone have been found to convert it to progesterone. Incubations with radioactive progesterone showed that it was actively metabolized by oocytes and embryos. In Xenopus incubations progesterone was converted to 5alpha-pregnane-3,20-dione, 17alpha-hydroxy-4-pregnen-3-one, 4-androstene-3,17-dione and 17alpha-20alpha-dihydroxy-4-pregne-3-one, indicating 5alpha-reductase, 17alpha-hydroxylase, 19-20-desmolase and 20alpha-hydroxylase activities. In oocytes of Triturus and Rana no evidence of 19-20-desmolase was found. In Rana oocytes were also not evidence of 17alpha-hydroxylase activity. All identified activities except 20alpha-hydroxylase were common to embryos of all three species. It is suggested that the steroid enzyme activities present in the embryos are not solely derived from the oocytes but synthentized during early development. Possible meaning of this kind of metabolism during differentiation remains open.  相似文献   

19.
[14-14C]16 alpha-Hydroxy-C-18- and C-19-steroid hormones were obtained in good yields by microbiological hydroxylation of correspondingly labelled steroids by Streptomyces roseochromogenes NRRL B-1233. Trace quantities of the labelled substrates were incubated on a rotary shaker (220 rpm) at 27 degrees C. The radioactive products were chromatographically separated, identified and the radiochemical purity was established by isotopic dilution analysis. The specific activities of 16 alpha-hydroxy-steroids obtained were assumed to be the same as those of the substrates, namely, 57.5 mCi/mmole for 16 alpha-hydroxy-4-androstene-3,17-dione, 57.5 mCi/mmole for 5-androstene-3 beta,16 alpha,17 beta-triol, 57.5 mCi/mmole for 16 alpha-hydroxy-dehydroepiandrosterone, 55.7 mCi/mmole for 16 alpha-hydroxy-estrone, and 57.5 mCi/mmole for 16 alpha-hydroxy-testosterone.  相似文献   

20.
A short and efficient method for the stereospecific synthesis of 3α,7α-dihydroxy-5β-androstan-17-one was accomplished from the readily available 4-androstene-3,17-dione. Key steps are the stereospecific and selective epoxidation of 4,6-androstadiene-3,17-dione, followed by hydrogenations with carefully selected reagents, solvents and reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号