共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael L. McKinney 《Biological invasions》2004,6(4):495-504
It is commonly asserted that exotic species promote the homogenization of biological communities. However, theoretical evidence implies that exotic species may often have the opposite effect, of differentiating biological communities where different exotic species become established in different areas. Furthermore, few empirical studies have directly measured the homogenizing effects of exotics. In this study, I used the plant inventories of 20 localities in the United States to measure whether exotic plant increased the similarity of those localities. I calculated Jaccard's index of similarity (JI) for exotic species and then for native species to see if the exotic JI was consistently higher when comparing two localities. I found that JI for both exotic and native species decline exponentially with increasing distance and latitude separation between localities so that localities that share many native species also tend to share many exotic species. More importantly, in nearly half of the pairwise locality comparisons (87 of 190), the (JIexotic/JInative) ratio is less than one, indicating a slight tendency for exotic species to differentiate rather than homogenize the localities analyzed. Also, the pattern of differentiation versus homogenization is strongly related to exotic species richness. When both localities have relatively few exotics, there is a clear tendency for exotics to produce biotic differentiation (JIexotic/JInative < 1). Much of this pattern seems related to the right-skewed frequency distribution of the geographic ranges of exotic species. As with native species, most exotics occur in few localities so there is a high probability that localities with low numbers of exotic species will share very few, if any, of those exotics. As exotic richness increases, the homogenizing effects become increasingly pronounced. 相似文献
2.
Aim To determine whether invasive and locally abundant non‐native species have a more homogenizing effect on plant communities than non‐invasive and less abundant non‐native species. Location California and Florida counties, conservation areas in the USA, and eight US cities. Methods Species lists among counties, conservation areas and cities were compared to see whether invasive and abundant non‐native species increased the Jaccard index of similarity between localities beyond any increases caused by non‐invasive and less abundant non‐native species. Results For all comparisons, we found that invasive non‐native species have a significantly greater homogenizing effect than non‐invasive non‐native species. For the US conservation areas, we found that locally abundant invasive species tend to be more widespread and more widely shared than less abundant invasive species. There is also a positive relationship between homogenization by invasive species and the magnitude of human disturbance. Main conclusions Invasive non‐native species tend to be disproportionately shared among communities relative to non‐invasive non‐native species. This effect is enhanced by human disturbance, as measured by the ratio of non‐native to native species. There is a synergism between abundance and geographical range which enhances the homogenizing effects of abundant species. Invasive species, with wide ecological niches, are more widely shared among communities and more locally abundant. Abundant invasive species are thus more spatially homogenizing, and more ecologically dominant (functionally homogenizing). Also, ‘perceived homogenization’ is probably greater than homogenization measured by the increase in shared species. The abundant species typically seen by the casual observer in a biological community are probably more commonly shared between communities than less common species. Studies that lack abundance data and measure homogenization only on the basis of shared species, which includes most homogenization studies to date, probably underestimate the homogenizing impacts of non‐native species as perceived by people. 相似文献
3.
Do climatically similar regions contain similar alien floras? A comparison between the mediterranean areas of central Chile and California 总被引:1,自引:0,他引:1
Alejandra Jiménez Aníbal Pauchard Lohengrin A. Cavieres Alicia Marticorena Ramiro O. Bustamante 《Journal of Biogeography》2008,35(4):614-624
Aim Taxonomic comparisons of alien floras across climatically similar regions have been proposed as a powerful approach for increasing our understanding of plant invasions across scales. However, detailed comparisons between the alien biotas of climatically similar regions are scarce. This study aims to compare the taxonomic patterns of alien species richness in mediterranean‐type climate areas of central Chile and California, in order to better understand how climatically similar regions converge or diverge in terms of their alien flora. Location Central Chile and California, United States. Methods We compared the alien floras of the state of California in the United States and central Chile, considering within‐region variation and taxonomic composition up to the species level. To test for within‐region variation, administrative units and counties were grouped within seven latitudinal bands for each region. We tested for differences in the relative contributions of the various origins of the naturalized species to each region. We used a family naturalization index to establish which families had relatively higher numbers of naturalized species in each region. We evaluated the similarity, using cluster analyses with Jaccard’s similarity index, of alien taxa between regions and latitudinal bands using presence–absence matrices at the species, genus and family levels. We used principal components analysis to determine the presence of a compositional gradient including all latitudinal bands. Results We recorded 1212 alien plant species in California and 593 in central Chile, of which 491 are shared between the two regions. These figures include 25 species that are native to California and 37 that are native to Chile. A comparison between the alien floras of central Chile and California reveals three major trends: (1) higher naturalized species diversity for California than for Chile, at all taxonomic levels; (2) differences in the proportion of species according to origin, with America, Africa, Asia and Australia providing a larger number of species in California than in Chile; (3) segregation between regions in terms of taxonomic composition of their alien flora, and a rather weak differentiation within regions; and (4) a trend towards higher similarity between the alien floras of latitudinal bands associated with higher levels of human disturbances. Main conclusions The alien floras of central Chile and California are significantly different, but this difference diminishes in highly disturbed areas. Thus, the current high levels of species movement caused by globalization, together with increasing levels of anthropogenic disturbances, should reduce the differentiation of the alien floras in these regions, increasing overall biotic homogenization. 相似文献
4.
Michael L. McKinney 《Diversity & distributions》2002,8(6):311-318
Abstract. I examined a data set of 77 protected areas in the USA (including national and state parks) to determine which of the following variables most strongly influence alien plant species richness: park area, climate (temperature and precipitation), native species richness, visitation rate, local human population size, total road length, park shape and duration of European settlement. Many of these predictor variables are intercorrelated, so I used multiple regression to help separate their effects. In support of previous studies, native species richness was the best single predictor of alien species richness, probably because it was a good estimator of both park area and habitat diversity available for establishment of alien species. Other significant predictors of alien species richness were years of occupation of the area by European settlers and the human population size of adjacent counties. Climate, visitation rate, road length and park shape did not influence alien species richness. The proportion of alien species (alien richness/native richness) is inversely related to park area, in agreement with a previous study. By identifying which variables are most important in determining alien species richness, such findings suggest ways to reduce alien species establishment. 相似文献
5.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America. 相似文献
6.
外来种入侵与物种多样性 总被引:18,自引:2,他引:18
在入侵生态学研究方面 ,物种多样性与生物入侵之间的关系已成为当前研究和争论的焦点。自Elton的经典假说提出以来 ,物种丰富度高的群落比物种贫乏的群落更能抵抗外来种入侵的观点得到广泛接受。一些理论模型和多样性处理实验支持了该假说。但现在越来越多的野外观测和实验研究开始对这一经典假说提出异议 ,甚至反对。同时 ,在入侵生态学广泛受到关注的今天 ,大量的实验研究也提出了一些新的观点。本文对Elton经典假说提出以来全球有关物种多样性与生物入侵关系的主要研究及其观点进行了评述 ,以期为我国有关研究工作的开展提供参考。 相似文献
7.
Veronika Kalusová Milan Chytrý Robert K. Peet Thomas R. Wentworth 《Global Ecology and Biogeography》2014,23(12):1366-1375
8.
9.
A. Whitman Miller Andrew L. Chang Natalie Cosentino‐Manning Gregory M. Ruiz 《Journal of phycology》2004,40(6):1028-1031
A new record of the Northern Atlantic fucoid Ascophyllum nodosum (L.) Le Jolis (Knotted wrack) was discovered on a shoreline in San Francisco Bay, California during a survey of intertidal habitats in 2001–2002. The alga showed no signs of deterioration 2.5 months after its initial detection. The healthy condition, presence of receptacles with developing oogonia, potential for asexual reproduction, and ability to withstand environmental conditions, both inside the Bay and on the outer Pacific coast, prompted a multiagency eradication effort. Given the relatively small area of shoreline inhabited by the alga, in combination with its absence in 125 other surveyed locations, we decided that manual removal of the seaweed would be the most environmentally sensitive yet effective eradication approach. No A. nodosum has been detected at the site since December 2002, and the species is thought to have been locally eradicated. The site continues to be monitored to assess the success of the eradication efforts. 相似文献
10.
Llewellyn C. Foxcroft David M. Richardson Mathieu Rouget Sandra MacFadyen 《Diversity & distributions》2009,15(3):367-378
Aim Spatial scale is critical for understanding and managing biological invasions. In providing direction to managing alien plant invasions, much emphasis is placed on collecting spatially explicit data. However, insufficient thought is often given to how the data are to be used, frequently resulting in the incompatibility of the data for different uses. This paper explores the role of spatial scale in interpreting, managing and monitoring alien plant invasions in a large protected area. Location Kruger National Park, South Africa. Methods Using 27,000 spatially‐explicit records of invasive alien plants for the Kruger National Park (> 20,000 km2) we assessed alien plant species richness per cell at nine different scales of resolution. Results When assessing the patterns of alien plants at the various scales of resolution, almost identical results are obtained when working at scales of quarter‐degree grids and quaternary watersheds (the fourth level category in South Africa's river basin classification system). Likewise, insights gained from working at resolutions of 0.1–0.5 km and 1–5 km are similar. At a scale of 0.1 × 0.1 km cells, only 0.4% of the Kruger National Park is invaded, whereas > 90% of the park is invaded when mapped at the quarter‐degree cell resolution. Main conclusions Selecting the appropriate scale of resolution is crucial when evaluating the distribution and abundance of alien plant invasions, understanding ecological processes, and operationalizing management applications and monitoring strategies. Quarter‐degree grids and quaternary watersheds are most useful at a regional or national scale. Grid cells of 1 to 25 km2 are generally useful for establishing priorities for and planning management interventions. Fine‐scale data are useful for informing management in areas which are small in extent; they also provide the detail appropriate for assessing patterns and rates of invasion. 相似文献
11.
Abstract The early life history stages of anurans in the Family Bufonidae often possess chemicals that are noxious or toxic to predators. Predators with no evolutionary history of exposure to bufomds may be particularly susceptible to these toxins. We conducted a series of laboratory experiments to investigate the toxic effects of eggs, hatchlings and tadpoles of the introduced toad, Bufo marinus (Linnaeus), on native Australian aquatic predators. There was considerable interspecific and intraspecific variation in these effects. Bufo marinus were highly toxic to some predator species, but were readily consumed by other species without apparent ill effect. Interspecific variation in toxic effects was not related to predator feeding mode or the number of B. marinus ingested by predators, and there was no clear pattern of distribution of vulnerability among species within higher taxa. Intraspecific variation in responses to toxins may result from individual variation in the resistance of predators to B. marinus toxins, or from individual variation in toxicity among B. marinus. Some native species adversely affected by B. marinus appeared unable to detect and avoid B. marinus toxins. This may result from a general inability to assess the toxicity of food items or from a lack of evolutionary exposure to B. marinus toxins. 相似文献
12.
Deborah G. McCullough Timothy T. Work Joseph F. Cavey Andrew M. Liebhold David Marshall 《Biological invasions》2006,8(4):611-630
Despite the substantial impacts of nonindigenous plant pests and weeds, relatively little is known about the pathways by which these organisms arrive in the U.S. One source of such information is the Port Information Network (PIN) database, maintained by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service (APHIS) since 1984. The PIN database is comprised of records of pests intercepted by APHIS personnel during inspections of travelers’ baggage, cargo, conveyances and related items arriving at U.S. ports of entry and border crossings. Each record typically includes the taxonomic identify of the pest, its country of origin, and information related to the commodity and interception site. We summarized more than 725,000 pest interceptions recorded in PIN from 1984 to 2000 to examine origins, interception sites and modes of transport for nonindigenous insects, mites, mollusks, nematodes, plant pathogens and weeds. Roughly 62% of intercepted pests were associated with baggage, 30% were associated with cargo and 7% were associated with plant propagative material. Pest interceptions occurred most commonly at airports (73%), U.S.-Mexico land border crossings (13%) and marine ports (9%). Insects dominated the database, comprising 73 to 84% of the records annually, with the orders Homoptera, Lepidoptera and Diptera collectively accounting for over 75% of the insect records. Plant pathogens, weeds and mollusks accounted for 13, 7 and 1.5% of all pest records, respectively, while mites and nematodes comprised less than 1% of the records. Pests were intercepted from at least 259 different locations. Common origins included Mexico, Central and South American countries, the Caribbean and Asia. Within specific commodity pathways, richness of the pest taxa generally increased linearly with the number of interceptions. Application of PIN data for statistically robust predictions is limited by nonrandom sampling protocols, but the data provide a valuable historical record of the array of nonindigenous organisms transported to the U.S. through international trade and travel. 相似文献
13.
There exist few empirical rules for the effects of introduced species, reflecting the context‐dependent nature of biological invasions. A promising approach toward developing generalizations is to explore hypotheses that incorporate characteristics of both the invader and the recipient system. We present the first general test of the hypothesis that an invader's impact is determined by the system's evolutionary experience with similar species. Through a meta‐analysis, we compared the taxonomic distinctiveness of high‐ and low‐impact invaders in several aquatic systems. We find that high‐impact invaders (i.e. those that displace native species) are more likely to belong to genera not already present in the system. 相似文献
14.
There is evidence that, within a region, non-native species introduced from nearby sources (extralimital native) promote homogenization and non-native species introduced from distant sources (exotic) promote differentiation of species composition. A possible explanation for these associations is that they are related to differences in the distribution of geographical range size. We test this by examining geographical ranges, delineated within a defined region, for assemblages of vascular plants in eight urban floras in the USA. Across floras, native species had the largest, least variable ranges and the greatest proportion of shared species. Exotic species had the most variable ranges with concentrations of species with small and large ranges and the lowest proportion of shared species. Extralimital natives had concentrations of species with intermediate-sized ranges and intermediate proportions of shared species. These results suggest that patterns of compositional similarity were associated with the relative strength and equality of two opposing patterns within species range size distributions: species with small vs. large ranges. In general, concentrations of species with small ranges promoted low levels and concentrations of species with large ranges promoted high levels of compositional similarity. However, patterns documented for exotic species will likely continue to develop, possibly taking on new forms, depending on how geographical distributions and the rate of introductions of exotic species change over time. Our findings also suggest that processes underlying these patterns have operated at two spatiotemporal scales. The first scale reflects historical consequences of anthropogenic activities occurring within regional extents that have promoted the introduction of extralimital natives; the second scale reflects modern consequences of anthropogenic activities operating at an increasingly global extent that have promoted the introduction of exotic species. 相似文献
15.
Darwin’s naturalization hypothesis predicts that introduced species tend not to invade areas containing congeneric native species, because they would otherwise compete with their close relatives and would likely encounter predators and pathogens that can attack them. An opposing view is that introduced species should succeed in areas where native congeners are present because they are more likely to share traits that pre-adapt them to their new environment. A test of both these hypotheses using data on fish introductions from several independent regions fails to support either viewpoints. In contrast to studies of nonindigenous plants, our results suggest that taxonomic affiliation is not an important general predictor of fish invasion success. 相似文献
16.
Michael L. McKinney 《Biological invasions》2006,8(3):415-425
Several extrinsic factors (area, native species diversity, human population size and latitude) significantly influence the
non-native species richness of plants, over several orders of magnitude. Using several data sets, I examine the role of these
factors in non-native species richness of several animal groups: birds, mammals and herptiles (amphibians, reptiles). I also
examine if non-native species richness is correlated among these groups. I find, in agreement with Sax [2001, Journal of Biogeography
28: 139–150], that latitude is inversely correlated with non-native species richness of many groups. Once latitude is accounted
for, area, human population size and native plant species richness are shown to be important extrinsic factors influencing
non-native animal species. Of these extrinsic factors, human population size and native plant species richness are the best
predictors of non-native animal species richness. Area, human population size and native plant species richness are highly
intercorrelated, along with non-native species richness of all taxa. Indeed a factor analysis shows that a single multivariate
axis explains over half of the variation for all variables among the groups. One reason for this covariation is that humans
tend to most densely occupy the most productive and diverse habitats where native plant species richness is very high. It
is thus difficult to disentangle the effects of human population size and native species richness on non-native species richness.
However, it seems likely that these two factors may combine to increase non-native species richness in a synergistic way:
high native species richness reflects greater habitat variety available for non-native species, and dense human populations
(that preferentially occupy areas rich in native species) increase non-native species importation and disturbance of local
habitats. 相似文献
17.
Identifying the source of species invasions: sampling intensity vs. genetic diversity 总被引:4,自引:1,他引:4
Population geneticists and community ecologists have long recognized the importance of sampling design for uncovering patterns of diversity within and among populations and in communities. Invasion ecologists increasingly have utilized phylogeographical patterns of mitochondrial or chloroplast DNA sequence variation to link introduced populations with putative source populations. However, many studies have ignored lessons from population genetics and community ecology and are vulnerable to sampling errors owing to insufficient field collections. A review of published invasion studies that utilized mitochondrial or chloroplast DNA markers reveals that insufficient sampling could strongly influence results and interpretations. Sixty per cent of studies sampled an average of less than six individuals per source population, vs. only 45% for introduced populations. Typically, far fewer introduced than source populations were surveyed, although they were sampled more intensively. Simulations based on published data forming a comprehensive mtDNA haplotype data set highlight and quantify the impact of the number of individuals surveyed per source population and number of putative source populations surveyed for accurate assignment of introduced individuals. Errors associated with sampling a low number of individuals are most acute when rare source haplotypes are dominant or fixed in the introduced population. Accuracy of assignment of introduced individuals is also directly related to the number of source populations surveyed and to the degree of genetic differentiation among them ( F ST ). Incorrect interpretations resulting from sampling errors can be avoided if sampling design is considered before field collections are made. 相似文献
18.
Fish community structure and environmental correlates in the highly altered southern Sacramento-San Joaquin Delta 总被引:1,自引:0,他引:1
We sampled 11 sites in the southern Sacramento-San Joaquin Delta from 1992–1999, to characterize fish communities and their associations with environmental variables. Riparian habitats were dominated by rock-reinforced levees, and large water diversion facilities greatly influenced local hydrodynamics and water quality. We captured 33 different taxa, only eight of which were native. None of the native species represented more than 0.5% of the total number of individuals collected. The abundance of native species was consistently low but typically peaked during high outflow periods. Fish communities were predominantly structured along environmental gradients of water temperature and river flow. Native species (tule perch, Hysterocarpus traski, & Sacramento sucker, Catostomus occidentalis) were associated with conditions of high river flow and turbidity, while the majority of the non-native species were associated with either warm water temperature or low river flow conditions. The exceptions were the non-native striped bass, Morone saxatilis, and white catfish, Ameiurus catus, which were positively associated with relatively high river flow. Variation in fish community structure was greater among river locations within years than within river locations among years, thus fish communities at each river location were consistently different each year. Differences in fish communities among river locations were correlated with river flow and turbidity. We predict that the fish communities of this region will remain numerically dominated by non-native species if the environmental conditions we observed persist in the future. 相似文献
19.
Aquatic and riparian ecosystems are known to be highly vulnerable to invasive alien species (IAS), especially when subjected to human-induced disturbances. In the last three decades, we have witnessed a growing increase in plant invasions in Portugal and Spain (Iberian Peninsula, south-western Europe), with very detrimental economic, social and ecological effects. Some of these species, such as the giant reed (Arundo donax L.) and the water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.), number among the world's worst weeds. We present an appraisal of this invasive alien river flora and the most problematic aquatic weeds. We review various aspects of invasion ecology, including spatial and temporal patterns of invasion, species invasiveness, species traits of invasive weeds, and relationships between human disturbance in rivers and surrounding areas and invasibility, and contextualize them in overall state-of-the-art terms. We also acknowledge the use of IAS as bioindicators of the ecological quality of rivers, wetlands and riparian zones. Remote-sensing tools and Geographic Information Systems for detecting and monitoring IAS in Iberian rivers are presented. 相似文献
20.