首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.  相似文献   

3.
The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.  相似文献   

4.
E. coli Hsp100 ClpB was recently identified as a critical part in a multi-chaperone system to play important roles in protein folding, protein transport and degradation in cell physiology. ClpB contains two nucleotide-binding domains (NBD1 and NBD2) within their primary sequences. NBD1 and NBD2 of ClpB can be classified as members of the large ATPase family known as ATPases associated with various cellular activities (AAA). To investigate how ClpB performs its ATPase activities for its chaperone activity, we have determined the crystal structure of ClpB nucleotide-binding domain 1 (NBD1) by MAD method to 1.80 A resolution. The NBD1 monomer structure contains one domain that comprises 11 alpha-helices and six beta-strands. When compared with the typical AAA structures, the crystal structure of ClpB NBD1 reveals a novel AAA topology with six-stranded beta-sheet as its core. The N-terminal portion of NBD1 structure has an extra beta-strand flanked by two extra alpha-helices that are not present in other AAA structures. Moreover, the NBD1 structure does not have a C-terminal helical domain as other AAA proteins do. No nucleotide molecule is bound with ClpB NBD1 in the crystal structure probably due to lack of the C-terminal helix domain in the structure. Isothermal titration calorimetry (ITC) studies of ClpB NBD1 and other ClpB deletion mutations showed that either ClpB NBD1 or NBD2 alone does not bind to nucleotides. However, ClpB NBD2 combined with ClpB C-terminal fragment can interact with one ADP or ATP molecule. ITC data also indicated that full-length ClpB could bind two ADP molecules or one ATP analogue ATPgammaS molecule. Further ATPase activity studies of ClpB and ClpB deletion mutants showed that only wild-type ClpB have ATPase activity. None of ClpB NBD1 domain, NBD2 domain and NBD2 with C-terminal fragment has detectable ATPase activities. On the basis of our structural and mutagenesis data, we proposed a "see-saw" model to illustrate the mechanisms by which ClpB performs its ATPase activities for chaperone functions.  相似文献   

5.
6.
Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpBΔN), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model β-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of β-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of β-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic cooperation between the two isoforms of ClpB chaperone. In addition, no significant recovery of the β-galactosidase from IBs in ΔclpB mutant cells suggests that ClpB is a key chaperone in IB protein release.  相似文献   

7.
Reidy M  Miot M  Masison DC 《Genetics》2012,192(1):185-193
Saccharomyces cerevisiae Hsp104 and Escherichia coli ClpB are Hsp100 family AAA+ chaperones that provide stress tolerance by cooperating with Hsp70 and Hsp40 to solubilize aggregated protein. Hsp104 also remodels amyloid in vitro and promotes propagation of amyloid prions in yeast, but ClpB does neither, leading to a view that Hsp104 evolved these activities. Although biochemical analyses identified disaggregation machinery components required for resolubilizing proteins, interactions among these components required for in vivo functions are not clearly defined. We express prokaryotic chaperones in yeast to address these issues and find ClpB supports both prion propagation and thermotolerance in yeast if it is modified to interact with yeast Hsp70 or if E. coli Hsp70 and its cognate nucleotide exchange factor (NEF) are present. Our findings show prion propagation and thermotolerance in yeast minimally require cooperation of species-specific Hsp100, Hsp70, and NEF with yeast Hsp40. The functions of this machinery in prion propagation were directed primarily by Hsp40 Sis1p, while thermotolerance relied mainly on Hsp40 Ydj1p. Our results define cooperative interactions among these components that are specific or interchangeable across life kingdoms and imply Hsp100 family disaggregases possess intrinsic amyloid remodeling activity.  相似文献   

8.
The Hsp100 chaperones ClpB and Hsp104 utilize the energy from ATP hydrolysis to reactivate aggregated proteins in concert with the DnaK/Hsp70 chaperone system, thereby playing an important role in protein quality control. They belong to the family of AAA+ proteins (ATPases associated with various cellular activities), possess two nucleotide binding domains per monomer (NBD1 and NBD2), and oligomerize into hexameric ring complexes. Furthermore, Hsp104 is involved in yeast prion propagation and inheritance. It is well established that low concentrations of guanidinium chloride (GdmCl) inhibit the ATPase activity of Hsp104, leading to so called “prion curing,” the loss of prion-related phenotypes. Here, we present mechanistic details about the Hsp100 chaperone inhibition by GdmCl using the Hsp104 homolog ClpB from Thermus thermophilus. Initially, we demonstrate that NBD1 of ClpB, which was previously considered inactive as a separately expressed construct, is a fully active ATPase on its own. Next, we show that only NBD1, but not NBD2, is affected by GdmCl. We present a crystal structure of ClpB NBD1 in complex with GdmCl and ADP, showing that the Gdm+ ion binds specifically to the active site of NBD1. A conserved essential glutamate residue is involved in this interaction. Additionally, Gdm+ interacts directly with the nucleotide, thereby increasing the nucleotide binding affinity of NBD1. We propose that both the interference with the essential glutamate and the modulation of nucleotide binding properties in NBD1 is responsible for the GdmCl-specific inhibition of Hsp100 chaperones.  相似文献   

9.
The molecular chaperone ClpB/Hsp104, a member of the AAA+ superfamily (ATPases associated with various cellular activities), rescues proteins from the aggregated state in collaboration with the DnaK/Hsp70 chaperone system. ClpB/Hsp104 forms a hexameric, ring-shaped complex that functions as a tightly regulated, ATP-powered molecular disaggregation machine. Highly conserved and essential arginine residues, often called arginine fingers, are located at the subunit interfaces of the complex, which also harbor the catalytic sites. Several AAA+ proteins, including ClpB/Hsp104, possess a pair of such trans-acting arginines in the N-terminal nucleotide binding domain (NBD1), both of which were shown to be crucial for oligomerization and ATPase activity. Here, we present a mechanistic study elucidating the role of this conserved arginine pair. First, we found that the arginines couple nucleotide binding to oligomerization of NBD1, which is essential for the activity. Next, we designed a set of covalently linked, dimeric ClpB NBD1 variants, carrying single subunits deficient in either ATP binding or hydrolysis, to study allosteric regulation and intersubunit communication. Using this well defined environment of site-specifically modified, cross-linked AAA+ domains, we found that the conserved arginine pair mediates the cooperativity of ATP binding and hydrolysis in an allosteric fashion.  相似文献   

10.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   

11.
The molecular chaperones ClpB (Hsp104) and DnaK (Hsp70) co-operate in the ATP-dependent resolubilization of aggregated proteins. A sequential mechanism has been proposed for this reaction; however, the mechanism and the functional interplay between both chaperones remain poorly defined. Here, we show for the first time that complex formation of ClpB and DnaK can be detected by using various types of affinity chromatography methods. The finding that the DnaK chaperone of Escherichia coli is not co-operating with ClpB from Thermus thermophilus further strengthens the specificity of this complex. The affinity of the complex is weak and interaction between both chaperones is nucleotide-dependent. The presence of ADP, which is shown to cause dissociation of ClpB(Tth), as well as ClpB deletion mutants incapable of oligomer formation prevent ClpB-DnaK complex formation. The experiments presented indicate a correlation between the oligomeric state of ClpB and its ability to interact with DnaK. The chaperone complex described here might facilitate transfer of intermediates between ClpB and DnaK during refolding of substrates from aggregates.  相似文献   

12.
番茄LeHsp110/ClpB基因的分子克隆及其对植物耐热性的影响   总被引:3,自引:0,他引:3  
HSP100ClpB是Clp蛋白家族的一员,具有分子伴侣功能,与细胞“获得耐热性(acquiredthermotolerance)”相关。从番茄cDNA文库中筛选到长度达3144bp的cDNA,依据最长的开放读码框推导出的多肽含980个氨基酸残基,分子进化分析结果表明该蛋白属于HSP100ClpB家族,因其计算分子量为110kD,所以命名为LeHSP110ClpB。实验证明,LeHsp110ClpB在番茄叶片中没有组成型表达,为热诱导型基因,其编码蛋白定位于叶绿体基质。利用农杆菌介导法,将CaMV35S驱动的反义LeHsp110ClpBcDNA片段导入番茄,高温下转反义基因的番茄株系中LeHsp110ClpBmRNA水平明显低于对照,转基因株系的PSⅡ对高温胁迫更加敏感,说明HSP110ClpB在植物耐热性方面起重要作用。  相似文献   

13.
The Escherichia coli heat shock protein ClpB, a member of the Hsp100 family, plays a crucial role in cellular thermotolerance. In co‐operation with the Hsp70 chaperone system, it is able to solubilize proteins aggregated by heat shock conditions and refold them into the native state in an ATP‐dependent way. It was established that the mechanism of ClpB action depends on the formation of a ring‐shaped hexameric structure and the translocation of a protein substrate through an axial channel. The structural aspects of this process are not fully known. By means of homology modeling and protein–protein docking, we obtained a model of the hexameric arrangement of the full‐length ClpB protein complexed with ATP. A molecular dynamics simulation of this model was performed to assess its flexibility and conformational stability. The high mobility of the “linker” M‐domain, essential for the renaturing activity of ClpB, was demonstrated, and the size and shape of central channel were analyzed. In this model, we propose the coordinates for a loop between b4 and B6 structural elements, not defined in previous structural research, which faces the inside of the channel and may therefore play a role in substrate translocation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 47–60, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state.  相似文献   

15.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB.  相似文献   

16.
The ClpB/Hsp104 chaperone solubilizes and reactivates protein aggregates in cooperation with DnaK/Hsp70 and its cofactors. The ClpB/Hsp104 protomer has two AAA+ modules, AAA-1 and AAA-2, and forms a homohexamer. In the hexamer, these modules form a two-tiered ring in which each tier consists of homotypic AAA+ modules. By ATP binding and its hydrolysis at these AAA+ modules, ClpB/Hsp104 exerts the mechanical power required for protein disaggregation. Although ATPase cycle of this chaperone has been studied by several groups, an integrated understanding of this cycle has not been obtained because of the complexity of the mechanism and differences between species. To improve our understanding of the ATPase cycle, we prepared many ordered heterohexamers of ClpB from Thermus thermophilus, in which two subunits having different mutations were cross-linked to each other and arranged alternately and measured their nucleotide binding, ATP hydrolysis, and disaggregation abilities. The results indicated that the ATPase cycle of ClpB proceeded as follows: (i) the 12 AAA+ modules randomly bound ATP, (ii) the binding of four or more ATP to one AAA+ ring was sensed by a conserved Arg residue and converted another AAA+ ring into the ATPase-active form, and (iii) ATP hydrolysis occurred cooperatively in each ring. We also found that cooperative ATP hydrolysis in at least one ring was needed for the disaggregation activity of ClpB.  相似文献   

17.
High-temperature stress can disrupt cellular proteostasis, resulting in the accumulation of insoluble protein aggregates. For survival under stressful conditions, it is important for cells to maintain a pool of native soluble proteins by preventing and/or dissociating these aggregates. Chaperones such as GroEL/GroES (Hsp60/Hsp10) and DnaK/DnaJ/GrpE (Hsp70/Hsp40/nucleotide exchange factor) help cells minimize protein aggregation. Protein disaggregation is accomplished by chaperones belonging to the Caseinolytic Protease (Clp) family of proteins. ClpB/Hsp100 proteins are strikingly ubiquitous and are found in bacteria, yeast and multi-cellular plants. The expression of these proteins is regulated by heat stress (HS) and developmental cues. Bacteria and yeast contain one and two forms of ClpB proteins, respectively. Plants possess multiple forms of these proteins that are localized to different cellular compartments (i.e. cytoplasm/nucleus, chloroplast or mitochondria). Overwhelming evidence suggests that ClpB/Hsp100 proteins play decisive roles in cell adaptation to HS. Mutant bacteria and yeast cells lacking active ClpB/Hsp100 proteins are critically sensitive to high-temperature stress. Likewise, Arabidopsis, maize and rice mutants lacking cytoplasmic ClpB proteins are very sensitive to heat. In this study, we present the structural and functional attributes of plant ClpB forms.  相似文献   

18.
Self-association of ClpB (a mixture of 95- and 80-kDa subunits) has been studied with gel filtration chromatography, analytical ultracentrifugation, and electron microscopy. Monomeric ClpB predominates at low protein concentration (0.07 mg/mL), while an oligomeric form is highly populated at >4 mg/mL. The oligomer formation is enhanced in the presence of 2 mM ATP or adenosine 5'-O-thiotriphosphate (ATPgammaS). In contrast, 2 mM ADP inhibits full oligomerization of ClpB. The apparent size of the ATP- or ATPgammaS-induced oligomer, as determined by gel filtration, sedimentation velocity and electron microscopy image averaging, and the molecular weight, as determined by sedimentation equilibrium, are consistent with those of a ClpB hexamer. These results indicate that the oligomerization reactions of ClpB are similar to those of other Hsp100 proteins.  相似文献   

19.
Hsp101 is a molecular chaperone that is required for the development of thermotolerance in plants and other organisms. We report that Arabidopsis thaliana Hsp101 is also regulated during seed development in the absence of stress, in a pattern similar to that seen for LEA proteins and small Hsps; protein accumulates during mid-maturation and is stored in the dry seed. Two new alleles of the locus encoding Hsp101 (HOT1) were isolated from Arabidopsis T-DNA mutant populations. One allele, hot1-3, contains an insertion within the second exon and is null for Hsp101 protein expression. Despite the complete absence of Hsp101 protein, plant growth and development, as well as seed germination, are normal, demonstrating that Hsp101 chaperone activity is not essential in the absence of stress. In thermotolerance assays hot1-3 shows a similar, though somewhat more severe, phenotype to the previously described missense allele hot1-1, revealing that the hot1-1 mutation is also close to null for protein activity. The second new mutant allele, hot1-2, has an insertion in the promoter 101 bp 5' to the putative TATA element. During heat stress the hot1-2 mutant produces normal levels of protein in hypocotyls and 10-day-old seedlings, and it is wild type for thermotolerance at these stages. Thus this mutation has not disrupted the minimal promoter sequence required for heat regulation of Hsp101. The hot1-2 mutant also expresses Hsp101 in seeds, but at a tenfold reduced level, resulting in reduced thermotolerance of germinating seeds and underscoring the importance of Hsp101 to seed stress tolerance.  相似文献   

20.
ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号