首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simian virus 40 nucleoprotein isolated from the nuclei of infected cells contains a nuclease-sensitive site adjacent to the viral origin of replication (between 0.66 and 0.73 map unit). Nuclear extracts were subfractionated by sucrose gradient centrifugation to yield provirions (200S) and simian virus 40 chromatin (80S). The 80S fraction was cleaved either by DNase I or by an endonuclease endogenous to BSC-1 cells with high preference for the 0.66 to 0.73 region. The 200S fraction was treated to release core particles that were sensitive to nuclease cleavage; however, DNase I showed little or no preference for the 0.66 to 0.73 region of the provirion core nucleoprotein.  相似文献   

2.
Salt-stable association of simian virus 40 capsid with simian virus 40 DNA   总被引:2,自引:0,他引:2  
V Blasquez  M Bina 《FEBS letters》1985,181(1):64-68
In 8 M CsCl, a fraction of the wild-type previrions and tsB228 nucleoprotein complexes lose their core histones but retain their capsid. These histone-depleted complexes appear in the electron microscope as a protein shell attached to supercoiled DNA. Consistent with this result, we find that in 1 M NaCl, the wild-type previrions dissociate into two populations of nucleoprotein complexes. One population sediments between 50 and 140 S and morphologically resembles the shell-DNA complexes isolated in CsCl gradients. The other population is comprised primarily of nucleoproteins which sediment at 40 S.  相似文献   

3.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

4.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.  相似文献   

5.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

6.
Primer RNA-DNA, a small (approximately 30-nucleotide) RNA-DNA hybrid molecule, was identified in recent studies of simian virus 40 DNA synthesis in vitro. The available evidence indicates that primer RNA-DNA is the product of the polymerase alpha-primase complex. Primer RNA-DNA is formed exclusively on lagging-strand DNA templates; it is synthesized initially in the vicinity of the simian virus 40 origin and at later times at sites progressively distal to the origin. To further characterize initiation events, template sequences encoding the 5' ends of both primer RNA and primer DNA, formed during a 5-s pulse, have been determined. Analyses of these sequences demonstrate the existence of an initiation signal for lagging-strand synthesis. At any given position, the initiation signal is located within those template sequences encoding primer RNA, situated proximal to the nucleotide encoding the 5' end of the RNA primer. In most instances, the sequence 5'-TTN-3' (where N encodes the nucleotide at the 5' end of the primer) is a feature of the initiation signal. Initiation signals are present, on average, once every 19 nucleotides. These results are discussed in terms of the mechanism of Okazaki fragment formation and possible links between prokaryotic and eukaryotic initiation events.  相似文献   

7.
8.
Heterogeneous DNof simian virus 40   总被引:3,自引:0,他引:3  
  相似文献   

9.
Nucleoprotein complexes (core particles) released from simian virus 40 (SV40) virions were compared with similar complexes (SV40 chromatin) extracted from nuclei of infected cells. Core particles were sensitive to cleavage by DNase I at about the same enzyme concentration required to cleave SV40 chromatin. DNase I preferentially cleaved SV40 chromatin adjacent to the viral origin of replication; however, cleavage of core particles occurred with much less selectivity. The difference between these nucleoproteins was not due to a structural alteration induced by the virion disruption procedure, since SV40 chromatin retained its pattern of DNase I-sensitive sites when subjected top this treatment. On the other hand, core particles did not acquire the nuclease-sensitive feature typical of SV40 chromatin when they were exposed to infected cell nuclei and the Triton X-100-EDTA extraction procedure. Hence, the nuclease-sensitive feature was lost or altered during the normal process of virion assembly and maturation.  相似文献   

10.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

11.
The SV40 T antigen database is a listing of plasmids and/or viruses that express mutant forms of the virus-encoded large T antigen protein. The parental virus strain, nucleic acid sequence of the mutations, the effect of the mutation on the T antigen amino acid sequence, and key references are included in the listing. The database is available from the authors as a Macintosh FileMaker Pro file, and as a hard copy printout.  相似文献   

12.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

13.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

14.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

15.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

16.
17.
An immunoprecipitation assay was established for simian virus 40 T-antigen-bound nucleoprotein complexes by means of precipitation with sera from hamsters bearing simian virus 40-induced tumors. About 80% of simian virus 40 replicating nucleoprotein complexes in various stages of replication were immunoprecipitated. In contrast, less than 21% of mature nucleoprotein complexes were immunoprecipitated. Pulse-chase experiments showed that T antigen was lost from most of the nucleoprotein complexes concurrently with completion of DNA replication. T antigen induced by dl-940, a mutant with a deletion in the region coding for small T antigen, was also associated with most of the replicating nucleoprotein complexes. Once bound with replicating nucleoprotein complexes at the permissive temperature, thermolabile T antigen induced by tsA900 remained associated with the complexes during elongation of the replicating DNA chain at the restrictive temperature. These results suggest that simian virus 40 T antigen (probably large T antigen) associates with nucleoprotein complexes at or before initiation of DNA replication and that the majority of the T antigen dissociates from the nucleoprotein complexes simultaneously with completion of DNA replication.  相似文献   

18.
A portion of the nucleoprotein containing viral DNA extracted from cells infected by simian virus (SV40) is preferentially cleaved by endonucleases in a region of the genome encompassing the origin of replication and early and late promoters. To explore this nuclease-sensitive structure, we cleaved SV40 chromatin molecules with restriction enzymes and digested the exposed termini with nuclease Bal31. Digestion proceeded only a short distance in the late direction from the MspI site, but some molecules were degraded 400 to 500 base pairs in the early direction. By comparison, BglI-cleaved chromatin was digested for only a short distance in the early direction, but some molecules were degraded 400 to 450 base pairs in the late direction. These barriers to Bal31 digestion (bracketing the BglI and the MspI sites) define the borders of the same open region in SV40 chromatin that is preferentially digested by DNase I and other endonucleases. In a portion of the SV40 chromatin, Bal31 could not digest through the nuclease-sensitive region and reached barriers after digesting only 50 to 100 base pairs from one end or the other. Chromatin molecules that contain barriers in the BglI to MspI region are physically distinct from molecules that are open in this region as evidenced by partial separation of the two populations on sucrose density gradients.  相似文献   

19.

• Induction of gene mutations by SV40 was studied in aneuploid human and Chinese hamster cells. In Chinese hamster cells SV40-induced chromosome aberrations were also studied.

• SV40 penetrated into the cells of both lines and induced synthesis of the T antigen. The efficiency of infection in Chinese hamster cells was tested additionallby their ability to form colonies in medium lacking the serum growth factor. The maximal number of cells with growth factor independence was observed on the first day after infection. When hamster cells had been maintained in “factor-free medium” for the first two passages after infection a sub-line was isolated, which synthesized T antigen 60 days after exposure to SV40. This was considered to be an indirect proof of the integration of viral genome into host chromosome.

• A significant increase in the frequency of chromosomal aberrations was detected in SV40-infected Chinese hamster cells. It was observed on the first and second days after treatment. The most numerous were the chromosome and chromatid breaks, which were distributed randomly in 5 morphological groups according to the chromosome length.

• SV40-induced mutations of resistance to 8-AG and 6-MP in human and Chinese hamster cells respectively were detected, when cells were plated in selective medium one to five days after infection. Induction was detected in all the 4 experiments with human cells and in 9 out of 11 experiments with Chinese hamsters cells. Induction was highly significant according to the Wilcoxon test (P>0.99), when the results of all experiments carried out in human and Chinese hamster cells were summarized. Resistance was stable after prolonged cultivation of 13 isolated clones under non-selective conditions.

• It is suggested that viral genome integration, gene mutations and chromosomal aberrations may have common molecular mechanisms. The role of gene mutations in virus-induced carcinogenesis is discussed.

Abbreviations: 8-AG, 8-azaguanine; FFM, factor-free medium; 6-MP, mercaptopurine; HGRT, hypoxantine-guanine phosphoribosyltransferase  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号