共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the respiratory response of native and agricultural plants to atmospheric CO2 enrichment has been reported over the past 75 years, only recently have these effects emerged as prominent measures of plant and ecosystem response to the earth's changing climate. In this review we discuss this rapidly expanding field of study and propose that both increasing and decreasing rates of leaf and whole-plant respiration are likely to occur in response to rising CO2 concentrations. While the stimulatory effects of CO2 on respiration are consistent with our knowledge of leaf carbohydrate status and plant metabolism, we wish to emphasize the rather surprising short-term inhibition of leaf respiration by elevated CO2 and the reported effects of long-term CO2 exposure on growth and maintenance respiration. As is being found in many studies, it is easier to document the respiratory response of higher plants to elevated CO2 than it is to assign a mechanistic basis for the observed effects. Despite this gap in our understanding of how respiration is affected by CO2 enrichment, data are sufficient to suggest that changes in leaf and whole-plant respiration may be important considerations in the carbon dynamics of terrestrial ecosystems as global CO2 continues to rise. Suggestions for future research that would enable these and other effects of CO2 on respiration to be unravelled are presented. 相似文献
2.
RuBPCO kinetics and the mechanism of CO2 entry in C3 plants 总被引:1,自引:1,他引:1
Abstract. The CO2 partial pressure in the chloroplasts of intact photosynthetic C3 leaves is thought to be less than the intercellular CO2 partial pressure. The intercellular CO2 partial pressure can be calculated from CO2 and H2O gas exchange measurements, whereas the CO2 partial pressure in the chloroplasts is unknown. The conductance of CO2 from the intercellular space to the chloroplast stroma and the CO2 partial pressure in the chloroplast stroma can be calculated if the properties of photosynthetic gas exchange are compared with the kinetics of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPCO). A discrepancy between gas exchange and RuBPCO kinetics can be attributed to a deviation of CO2 partial pressure in the chloroplast stroma from that calculated in the intercellular space. This paper is concerned with the following: estimation of the kinetic constants of RuBPCO and their comparison with the CO2 compensation concentration; their comparison with differential uptake of 14CO2 and 12CO2; and their comparison with O2 dependence of net CO2 uptake of photosynthetic leaves. Discrepancy between RuBPCO kinetics and gas exchange was found at a temperature of 12.5 °C, a photosynthetic photon flux density (PPFD) of 550 μmol quanta m?2 s?1, and an ambient CO2 partial pressure of 40 Pa. Consistency between RuBPCO kinetics and gas exchange was found if CO2 partial pressure was decreased, temperature incresed and PPFD decreased. The results suggest that a discrepancy between RuBPCO kinetics and gas exchange is due to a diffusion resistance for CO2 across the chloroplast envelope which decreases with increasing temperature. At low CO2 partial pressure, the diffusion resistance appears to be counterbalanced by active CO2 (or HCO3) transport with high affinity and low maximum velocity. At low PPFD, CO2 partial pressure in the chloroplast stroma appears to be in equilibrium with that in the intercellular space due to low CO2 flux. 相似文献
3.
Abstract. A simulation of the quantitative influence of altitude on photosynthetic CO2 uptake capability (AP ) included the effects of predicted changes (1) in air temperature (lapse rate) and (2) leaf temperature, (3) ambient pressure and CO2 concentration, and (4) the diffusion coefficient for CO2 in air. When a dry lapse rate (0.01°C m−1 ) in air temperature was simulated, significant declines (up to 14%) in AP were predicted from sea level to 4km altitude. A moist lapse rate of 0.003°C m−1 resulted in less than a 4% decrease in AP over the same altitude range. When natural leaf temperatures (predicted from heat balance analyses) were simulated, AP was significantly greater (∼20%) than when leaf temperatures were considered equal to air temperature for all lapse conditions. There was virtually no change in AP with altitude when predicted leaf temperatures and moist lapse conditions were simulated. There was a significant (∼10%) increase in AP with altitude when leaf temperature was held constant at 30°C (regardless of altitude) under moist lapse conditions. Future studies evaluating the effects of elevation on photosynthesis could benefit from the above considerations of the effects of natural leaf temperature regimes and prevailing lapse conditions on CO2 uptake potential. 相似文献
4.
CO2 responsiveness of plants: a possible link to phloem loading 总被引:5,自引:3,他引:2
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2. 相似文献
5.
Stomatal development and CO2 : ecological consequences 总被引:5,自引:1,他引:4
6.
Wide variation exists in the growth responses of C3 plants to elevated CO2 levels. To investigate the role of photosynthetic feedback in this phenomenon, photosynthetic parameters and growth were measured for lines of Flaveria linearis with low, intermediate or high cytosolic fructose-1,6-bisphosphatase (cytFBPase) activity when grown at either 35 or 65 Pa CO2. The effects of pot size on the responses of these lines to elevated CO2 were also examined. Photosynthesis and growth of plants with low cytFBPase activity were less responsive to elevated CO2, and these plants had a reduced maximum potential for photosynthesis and growth. Plants with intermediate cytFBPase activity also showed a lower relative growth enhancement when grown at 65 Pa CO2. There was a significant pot size effect on photosynthesis and growth for line 85-1 (high cytFBPase). This effect was greatest for line 85-1 when grown at 35 Pa CO2, since these plants showed the greatest downward acclimation of photosynthesis when grown in small pots. There was a minimal pot size effect for line 84-9 (low cytFBPase), and this could be partly attributed to the reduced CO2 sensitivity of this line. It is proposed that the capacity for sucrose synthesis in C3, plants is partly responsible for their wide variation in CO2 responsiveness. 相似文献
7.
Elevated concentrations of atmospheric
CO2 protect against and compensate for
O3 damage to photosynthetic tissues of
field-grown wheat 总被引:2,自引:0,他引:2
I. F. McKEE B. J. MULHOLLAND J. CRAIGON C. R. BLACK & S. P. LONG 《The New phytologist》2000,146(3):427-435
The effects of elevated concentrations of atmospheric carbon dioxide and ozone on diurnal patterns of photosynthesis have been investigated in field-grown spring wheat ( Triticum aestivum ). Plants cultivated under realistic agronomic conditions, in open-top chambers, were exposed from emergence to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2 ] at ambient (380 μmol mol−1 , seasonal mean) or elevated (692 μmol mol−1 ) levels, [O3 ] at ambient (27 nmol mol−1 , 7 hr seasonal mean) or elevated (61 nmol mol−1 ) levels. After anthesis, diurnal measurements were made of flag-leaf gas-exchange and in vitro Rubisco activity and content. Elevated [CO2 ] resulted in an increase in photoassimilation rate and a loss of excess Rubisco activity. Elevated [O3 ] caused a loss of Rubisco and a decline in photoassimilation rate late in flag-leaf development. Elevated [CO2 ] ameliorated O3 damage. The mechanisms of amelioration included a protective stomatal restriction of O3 flux to the mesophyll, and a compensatory effect of increased substrate on photoassimilation and photosynthetic control. However, the degree of protection and compensation appeared to be affected by the natural seasonal and diurnal variations in light, temperature and water status. 相似文献
8.
ALAN W. BOWN 《Plant, cell & environment》1985,8(6):459-465
Abstract The experimental determination of cytoplasmic and vacuolar pH values is discussed. Despite variation in these values evidence indicates that intracellular pH values are normally regulated within narrow limits. The regulatory mechanisms proposed involve the metabolic consumption of OH& and the active efflux of H +. The evidence for intracellular pH modification in response to CO2 hydration and the production of HCO?3 and H+ is examined. Theoretical calculations and experimental data indicate that CO2 concentrations as high as 5% will lower intracellular pH. Conversely, variation in CO2 levels around atmospheric concentrations is unlikely to perturb intracellular pH. High CO2 levels are found in bulky tissues, and flooded root systems. Evidence is presented that the slow diffusion of dissolved CO2 compared to gaseous CO2 results in its accumulation. It is proposed that the accumulation of respiratory CO2 may reduce intracellular pH values when plant tissues, cells or protoplasts are maintained in a liquid culture medium. Finally, the possible role of dark CO2 fixation and organic acid synthesis in the regulation of intracellular pH is examined. 相似文献
9.
There is scope for land‐use changes to increase or decrease CO2 concentrations in the atmosphere over the next century. Here we make simple but robust calculations of the maximum impact of such changes. Historical land‐use changes (mostly deforestation) and fossil fuel emissions have caused an increase in atmospheric concentration of CO2 of 90 ppm between the pre‐industrial era and year 2000. The projected range of CO2 concentrations in 2100, under a range of emissions scenarios developed for the IPCC, is 170–600 ppm above 2000 levels. This range is mostly due to different assumptions regarding fossil fuel emissions. If all of the carbon so far released by land‐use changes could be restored to the terrestrial biosphere, atmospheric CO2 concentration at the end of the century would be about 40–70 ppm less than it would be if no such intervention had occurred. Conversely, complete global deforestation over the same time frame would increase atmospheric concentrations by about 130–290 ppm. These are extreme assumptions; the maximum feasible reforestation and afforestation activities over the next 50 years would result in a reduction in CO2 concentration of about 15–30 ppm by the end of the century. Thus the time course of fossil fuel emissions will be the major factor in determining atmospheric CO2 concentrations for the foreseeable future. 相似文献
10.
A. G. Peterson J. T. Ball Y. Luo C. B. Field P. S. Curtis K. L. Griffin C. A. Gunderson R. J. Norby D. T. Tissue M. Forstreuter A. Rey C. S. Vogel & Cmeal Participants 《Plant, cell & environment》1999,22(9):1109-1119
Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis. 相似文献
11.
The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration of Plantago major 总被引:8,自引:0,他引:8
The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and root respiration of Plantago major L. ssp. major L. was investigated. Plants were grown in a nutrient solution in growth chambers at 350 and 700 μl I−1 CO2 during 7 weeks. The total dry weight of the Co2 -enriched plants at the end of this period was 50% higher than that of control plants. However, the relative growth rate (RGR) was stimulated only during the first half of the growing period. The transient nature of the stimulation of the RGR was not likely to be due to end-product inhibition of photosynthesis. It is suggested that in P. major , a rosette plant, self-shading causes a decline in photosynthesis and results in an increase in the shoot: root ratio and a decrease in RGR. CO2 -enriched plants grow faster and cosequently suffer more from self-shading. Corrected for this ontogenetic drift, high CO2 concentrations stimulated the RGR of P. major throughout the entire experiment. 相似文献
12.
Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2 总被引:10,自引:7,他引:3
Abstract. While a short-term exposure to elevated atmospheric CO2 induces a large increase in photosynthesis in many plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was shown that, for a wild C3 species growing in its natural environment and exposed to elevated CO2 for four growing seasons, the photosynthetic capacity has actually increased by 31%. An increase in photosynthetic capacity has been observed in other species growing in the field, which suggests that photosynthesis of certain field grown plants will continue to respond to elevated levels of atmospheric CO2 相似文献
13.
Plants grown at elevated pCO2 often fail to sustain the initial stimulation of net CO2 uptake rate (A). This reduced, acclimated, stimulation of A often occurs concomitantly with a reduction in the maximum carboxylation velocity (Vc,max) of Rubisco. To investigate this relationship we used the Farquhar model of C3 photosynthesis to predict the minimum Vc,max capable of supporting the acclimated stimulation in A observed at elevated pCO2. For a wide range of species grown at elevated pCO2 under contrasting conditions we found a strong correlation between observed and predicted values of Vc,max. This exercise mechanistically and quantitatively demonstrated that the observed acclimated stimulation of A and the simultaneous decrease in Vc,max observed at elevated pCO2 is mechanistically consistent. With the exception of plants grown at a high elevated pCO2 (> 90 Pa), which show evidence of an excess investment in Rubisco, the failure to maintain the initial stimulation of A is almost entirely attributable to the decrease in Vc,max and investment in Rubisco is coupled to requirements. 相似文献
14.
15.
The respiratory source of CO2 总被引:7,自引:2,他引:5
J. F. FARRAR 《Plant, cell & environment》1985,8(6):427-438
Abstract Approximately half of the carbon plants fix in photosynthesis is lost in dark respiration. The major pathways for dark respiration and their control are briefly discussed in the context of a growing plant. It is suggested that whole-plant respiration may be largely ADP-limited and that fine control of the respiratory network serves to select the respiratory substrate and to partition carbon between the numerous possible fates within the network. The striking stoichiometry between whole-plant growth and respiration is reviewed, and the relationships between substrate-limited growth and ADP-limited respiration are discussed. 相似文献
16.
Changes in net photosynthesis and growth of Pinus eldarica seedlings in response to atmospheric CO2 enrichment 总被引:3,自引:2,他引:1
Pinus eldarica L. trees, rooted in the natural soil of an agricultural field at Phoenix, Arizona, were grown from the seedling stage in clear-plastic-wall open-top enclosures maintained at four different atmospheric CO2 concentrations for 15 months. Light response functions were determined for one tree from each treatment by means of whole-tree net CO2 exchange measurements at the end of this period, after which rates of carbon assimilation of an ambient-treatment tree were measured across a range of atmospheric CO2 concentrations. The first of these data sets incorporates the consequences of both the CO2-induced enhancement of net photosynthesis per unit needle area and the CO2-induced enhancement of needle area itself (due primarily to the production of more needles), whereas the second data set reflects only the first of these effects. Hence the division of the normalized results of the first data set by the normalized results of the second set yields a representation of the increase in whole-tree net photosynthesis due to enhanced needle production caused by atmospheric CO2 enrichment. In the solitary trees we studied, the relative contribution of this effect increased rapidly with the CO2 concentration of the air to increase whole-tree net photosynthesis by nearly 50% at a CO2 concentration approximately 300 μmol mol−1 above ambient. 相似文献
17.
A global ‘CO2 fertilizer effect’ multiplier is often used in crop or ecosystem models because of its simplicity. However, this approach does not take into account the interaction between CO2, temperature and light on assimilation. This omission can lead to significant under- or overestimation of the magnitude of beneficial effects from elevated CO2, depending on environmental conditions. We use a mechanistic model of the biochemistry of photosynthesis to represent the response of net assimilation to different levels of CO2, temperature and radiation, on the daily time scale. Instantaneous assimilation rates for an idealized canopy model are integrated through diurnal cycles of environmental variables derived from historical climate data at three locations in North America. The calculated CO2 fertilizer effect is greatest at high light and warm temperatures. The results are summarized by assimilation response surfaces specified by the CO2 concentration, the canopy leaf area index, and by daily values of temperature and radiation available from climatic records. These summary functions are suitable for incorporation into crop or ecosystem models for predicting carbon assimilation or biomass production on a daily time step. An example application of the function reveals that for a relatively cool, high latitude location, the beneficial effects from a CO2 doubling would be negligible during the early spring, even assuming a + 4°C global warming scenario. In contrast, the beneficial effects from increasing CO2 at a relatively warm, lower latitude location are greatest in the spring, but decline in late summer because of excessively warm temperatures with a + 4°C global warming. 相似文献
18.
1. Plants growing in deep shade and high temperature, such as in the understorey of humid tropical forests, have been predicted to be particularly sensitive to rising atmospheric CO2 . We tested this hypothesis in five species whose microhabitat quantum flux density (QFD) was documented as a covariable. After 7 (tree seedlings of Tachigalia versicolor and Beilschmiedia pendula ) and 18 months (shrubs Piper cordulatum and Psychotria limonensis, and grass Pharus latifolius ) of elevated CO2 treatment ( c. 700 μl litre–1 ) under mean QFD of less than 11 μmol m–2 s–1 , all species produced more biomass (25–76%) under elevated CO2 .
2. Total plant biomass tended to increase with microhabitat QFD (daytime means varying from 5 to 11μmol m–2 s–1 ) but the relative stimulation by elevated CO2 was higher at low QFD except in Pharus .
3. Non-structural carbohydrate concentrations in leaves increased significantly in Pharus (+ 27%) and Tachigalia (+ 40%).
4. The data support the hypothesis that tropical plants growing near the photosynthetic light compensation point are responsive to elevated CO2 . An improved plant carbon balance in deep shade is likely to influence understorey plant recruitment and competition as atmospheric CO2 continues to rise. 相似文献
2. Total plant biomass tended to increase with microhabitat QFD (daytime means varying from 5 to 11μmol m
3. Non-structural carbohydrate concentrations in leaves increased significantly in Pharus (+ 27%) and Tachigalia (+ 40%).
4. The data support the hypothesis that tropical plants growing near the photosynthetic light compensation point are responsive to elevated CO
19.
20.
Terrestrial higher-plant response to increasing atmospheric [CO2 ] in relation to the global carbon cycle 总被引:5,自引:0,他引:5
JEFFREY S. AMTHOR 《Global Change Biology》1995,1(4):243-274
Terrestrial higher plants exchange large amounts of CO2 with the atmosphere each year; c. 15% of the atmospheric pool of C is assimilated in terrestrial-plant photosynthesis each year, with an about equal amount returned to the atmosphere as CO2 in plant respiration and the decomposition of soil organic matter and plant litter. Any global change in plant C metabolism can potentially affect atmospheric CO2 content during the course of years to decades. In particular, plant responses to the presently increasing atmospheric CO2 concentration might influence the rate of atmospheric CO2 increase through various biotic feedbacks. Climatic changes caused by increasing atmospheric CO2 concentration may modulate plant and ecosystem responses to CO2 concentration. Climatic changes and increases in pollution associated with increasing atmospheric CO2 concentration may be as significant to plant and ecosystem C balance as CO2 concentration itself. Moreover, human activities such as deforestation and livestock grazing can have impacts on the C balance and structure of individual terrestrial ecosystems that far outweigh effects of increasing CO2 concentration and climatic change. In short-term experiments, which in this case means on the order of 10 years or less, elevated atmospheric CO2 concentration affects terrestrial higher plants in several ways. Elevated CO2 can stimulate photosynthesis, but plants may acclimate and (or) adapt to a change in atmospheric CO2 concentration. Acclimation and adaptation of photosynthesis to increasing CO2 concentration is unlikely to be complete, however. Plant water use efficiency is positively related to CO2 concentration, implying the potential for more plant growth per unit of precipitation or soil moisture with increasing atmospheric CO2 concentration. Plant respiration may be inhibited by elevated CO2 concentration, and although a naive C balance perspective would count this as a benefit to a plant, because respiration is essential for plant growth and health, an inhibition of respiration can be detrimental. The net effect on terrestrial plants of elevated atmospheric CO2 concentration is generally an increase in growth and C accumulation in phytomass. Published estimations, and speculations about, the magnitude of global terrestrial-plant growth responses to increasing atmospheric CO2 concentration range from negligible to fantastic. Well-reasoned analyses point to moderate global plant responses to CO2 concentration. Transfer of C from plants to soils is likely to increase with elevated CO2 concentrations because of greater plant growth, but quantitative effects of those increased inputs to soils on soil C pool sizes are unknown. Whether increases in leaf-level photosynthesis and short-term plant growth stimulations caused by elevated atmospheric CO2 concentration will have, by themselves, significant long-term (tens to hundreds of years) effects on ecosystem C storage and atmospheric CO2 concentration is a matter for speculation, not firm conclusion. Long-term field studies of plant responses to elevated atmospheric CO2 are needed. These will be expensive, difficult, and by definition, results will not be forthcoming for at least decades. Analyses of plants and ecosystems surrounding natural geological CO2 degassing vents may provide the best surrogates for long-term controlled experiments, and therefore the most relevant information pertaining to long-term terrestrial-plant responses to elevated CO2 concentration, but pollutants associated with the vents are a concern in some cases, and quantitative knowledge of the history of atmospheric CO2 concentrations near vents is limited. On the whole, terrestrial higher-plant responses to increasing atmospheric CO2 concentration probably act as negative feedbacks on atmospheric CO2 concentration increases, but they cannot by themselves stop the fossil-fuel-oxidation-driven increase in atmospheric CO2 concentration. And, in the very long-term, atmospheric CO2 concentration is controlled by atmosphere-ocean C equilibrium rather than by terrestrial plant and ecosystem responses to atmospheric CO2 concentration. 相似文献