首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

2.
Several weakly transported sugars were tested for transport by the Na+-dependent sugar carrier with slices of everted hamster intestinal tissue. Sugars were assumed to be transported by this carrier if the accumulation was diminished in the absence of Na+ and in the presence of the competitive inhibitor 1,5-anhydro-d-glucitol. The extent of accumulation was correlated with the number of hydroxyl groups in the d-gluco configuration if the ring oxygen was placed in the normal d-glucose position. 5-Thio-d-glucose, with a sulphur atom in the ring, was transported at about the same rate as d-glucose and had a similar Ki for d-galactose transport, but myoinositol was poorly accumulated. It is suggested that there is no hydrogen bonding at the ring oxygen atom, but that the oxygen atom is found at this position as a result of steric constraints. No sugar without a hydroxyl group in the d-gluco position at C-2 of the sugar, including d-mannose, 2-deoxy-d-glucose, 2-chloro-2-deoxy-d-glucose and 2-deoxy-2-fluoro-d-glucose, was transported by the Na+-dependent carrier, but these sugars and l-fucose weakly and competitively inhibit the Na+-dependent accumulation of l-glucose into slices of everted hamster intestinal tissue. It is concluded that the bond between the carrier and C-2 of the sugar may be covalent, and a possible mechanism for active intestinal transport is proposed.  相似文献   

3.
Uptake of monosaccharides by guinea-pig cerebral-cortex slices   总被引:1,自引:1,他引:0       下载免费PDF全文
By the use of 1mm-iodoacetate to inhibit glycolysis in guinea-pig cerebral tissue slices, the kinetics of the uptake of monosaccharides on transfer of tissue from 0° to 37° were studied. d-Ribose, d-galactose, d-mannose, l-sorbose, and d-fructose showed diffusion kinetics, whereas 2-deoxy-d-glucose, d-glucose, d-arabinose and d-xylose showed saturation kinetics.  相似文献   

4.
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.  相似文献   

5.
The strength of attachment of normal and transformed baby hamster kidney cells was markedly increased when attached cells were treated with concanavalin A (Con A). The cells became less sensitive to detachment by physical shear or by treatment with trypsin or EDTA; however, their morphology, as observed by phase contrast microscopy, did not change. The effects of Con A were prevented by the simultaneous addition of either D-glucose or α-methyl-D-glucoside with the Con A. Also addition of these reagents to the attached cells after Con A treatment partially reversed the effects caused by Con A. Pre-treatment of the culture flasks with Con A before cell attachment resulted in an increase in the strength of cell attachment to the culture flasks as compared to untreated controls.  相似文献   

6.
Tris-disrupted and intact brush border membrane preparations from mucosa of hamster jejunum were capable of preferentially binding actively transported D-glucose in a similar manner. Density gradient centrifugation of the Tris-disrupted brush borders indicated that D-glucose was bound to a fraction containing the cores or inner material of the microvilli. The properties of this binding were examined with the Tris-disrupted brush border preparation. Actively transported sugars competitively inhibited preferential D-glucose binding, whereas no effect was observed with nonactively transported sugars. Neither actively nor nonactively transported amino acids affected D-glucose binding. D-Glucosamine, which is not actively transported, was inhibitory to preferential D-glucose binding as well as to the active transport of D-glucose by everted sacs of hamster jejunum. No inhibitory effect was observed with the same concentration of D-galactosamine. Preferential D-glucose binding was also inhibited by sulfhydryl-reacting compounds, Ca2+, and Li+ ions. On the other hand, Mg2+ was shown to be stimulatory and Na+, NH4 +, and K+ had no effect on this phenomenon. The results of these experiments suggest that preferential D-glucose binding to brush borders is related to the initial step in active sugar transport by the small intestine.  相似文献   

7.
L-Alanine and 3-O-methyl-D-glucose accumulation by mucosal strips from rabbit ileum has been investigated with particular emphasis on the interaction between Na and these transport processes. L-Alanine is rapidly accumulated by mucosal tissue and intracellular concentrations of approximately 50 mM are reached within 30 min when extracellular L-alanine concentration is 5 mM. Evidence is presented that intracellular alanine exists in an unbound, osmotically active form and that accumulation is an active transport process. In the absence of extracellular Na, the final ratio of intracellular to extracellular L-alanine does not differ significantly from unity and the rate of net uptake is markedly inhibited. Amino acid accumulation is also inhibited by 5 x 10-5 M ouabain. 3-O-methyl-D-glucose accumulation by this preparation is similarly affected by ouabain and by incubation in a Na-free medium. The effects of amino acid accumulation, of ouabain, and of incubation in a Na-free medium on cell water content and intracellular Na and K concentrations have also been investigated. These results are discussed with reference to the two hypotheses which have been suggested to explain the interaction between Na and intestinal nonelectrolyte transport.  相似文献   

8.
Pyranose 2-oxidase (P2O) catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization.  相似文献   

9.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

10.
Renal transport of four different categories of organic solutes, namely sugars, neutral amino acids, monocarboxylic acids and dicarboxylic acids, was studied by using the potential-sensitive dye 3,3′-diethyloxadicarbocyanine iodide in purified luminal-membrane and basolateral-membrane vesicles isolated from rabbit kidney cortex. Valinomycin-induced K+ diffusion potentials resulted in concomitant changes in dye–membrane-vesicle absorption spectra. Linear relationships were obtained between these changes and depolarization and hyperpolarization of the vesicles. Addition of d-glucose, l-phenylalanine, succinate or l-lactate to luminal-membrane vesicles, in the presence of an extravesicular>intravesicular Na+ gradient, resulted in rapid transient depolarization. With basolateral-membrane vesicles no electrogenic transport of d-glucose or l-phenylalanine was observed. Spectrophotometric competition studies revealed that d-galactose is electrogenically taken up by the same transport system as that for d-glucose, whereas l-phenylalanine, succinate and l-lactate are transported by different systems in luminal-membrane vesicles. The absorbance changes associated with simultaneous addition of d-glucose and l-phenylalanine were additive. The uptake of these solutes was influenced by the presence of Na+-salt anions of different permeabilities in the order: Cl>SO42−>gluconate. Addition of valinomycin to K+-loaded vesicles enhanced uptake of d-glucose and l-phenylalanine in the presence of an extravesicular>intravesicular Na+ gradient. Gramicidin or valinomycin plus nigericin diminished/abolished electrogenic solute uptake by Na+- or Na++K+-loaded vesicles respectively. These results strongly support the presence of Na+-dependent renal electrogenic transport of d-glucose, l-phenylalanine, succinate and l-lactate in luminal-membrane vesicles.  相似文献   

11.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

12.
The epidermal growth factor repeats of the Notch receptor are extensively glycosylated with three different O-glycans. O-Fucosylation and elongation by the glycosyltransferase Fringe have been well studied and shown to be essential for proper Notch signaling. In contrast, biosynthesis of O-glucose and O-N-acetylglucosamine is less well understood. Recently, the isolation of the Drosophila mutant rumi has shown that absence of O-glucose impairs Notch function. O-Glucose is further extended by two contiguous α1,3-linked xylose residues. We have identified two enzymes of the human glycosyltransferase 8 family, now named GXYLT1 and GXYLT2 (glucoside xylosyltransferase), as UDP-d-xylose:β-d-glucoside α1,3-d-xylosyltransferases adding the first xylose. The enzymes are specific for β-glucose-terminating acceptors and UDP-xylose as donor substrate. Generation of the α1,3-linkage was confirmed by nuclear magnetic resonance. Activity on a natural acceptor could be shown by in vitro xylosylation of a Notch fragment expressed in a UDP-xylose-deficient cell line and in vivo by co-expression of the enzymes and the Notch fragment in insect cells followed by mass spectrometric analysis of peptide fragments.  相似文献   

13.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

14.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

15.
The composition of the cell wall of Fusicoccum amygdali   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The cell wall of Fusicoccum amygdali consisted of polysaccharides (85%), protein (4–6%), lipid (5%) and phosphorus (0.1%). 2. The main carbohydrate constituent was d-glucose; smaller amounts of d-glucosamine, d-galactose, d-mannose, l-rhamnose, xylose and arabinose were also identified, and 16 common amino acids were detected. 3. Chitin, which accounted for most of the cell-wall glucosamine, was isolated in an undegraded form by an enzymic method. Chitosan was not detected, but traces of glucosamine were found in alkali-soluble and water-soluble fractions. 4. Cell walls were stained dark blue by iodine and were attacked by α-amylase, with liberation of glucose, maltose and maltotriose, indicating the existence of chains of α-(1→4)-linked glucopyranose residues. 5. Glucose and gentiobiose were liberated from cell walls by the action of an exo-β-(1→3)-glucanase, giving evidence for both β-(1→3)- and β-(1→6)-glucopyranose linkages. 6. Incubation of cell walls with Helix pomatia digestive enzymes released glucose, N-acetyl-d-glucosamine and a non-diffusible fraction, containing most of the cell-wall galactose, mannose and rhamnose. Part of this fraction was released by incubating cell walls with Pronase; acid hydrolysis yielded galactose 6-phosphate and small amounts of mannose 6-phosphate and glucose 6-phosphate as well as other materials. Extracellular polysaccharides of a similar nature were isolated and may be formed by the action of lytic enzymes on the cell wall. 7. About 30% of the cell wall was resistant to the action of the H. pomatia digestive enzymes; the resistant fraction was shown to be a predominantly α-(1→3)-glucan. 8. Fractionation of the cell-wall complex with 1m-sodium hydroxide gave three principal glucan fractions: fraction BB had [α]D +236° (in 1m-sodium hydroxide) and showed two components on sedimentation analysis; fraction AA2 had [α]D −71° (in 1m-sodium hydroxide) and contained predominantly β-linkages; fraction AA1 had [α]D +40° (in 1m-sodium hydroxide) and may contain both α- and β-linkages.  相似文献   

16.
Transmembrane sugar transport into immature internodal parenchyma tissue of sugarcane (Saccharum officinarum L.) is a metabolically regulated process as evidenced by its sensitivity to pH, temperature, anaerobiosis, and metabolic inhibitors. All sugars studied—glucose, fructose, galactose, sorbose, glucose 6-phosphate, 3-O-methylglucose, and 2-deoxy-d-glucose—were apparently transported via the same carrier sites since they competed with each other for uptake. External concentrations of these sugars at one-half Vmax were in the range of 3.9 to 8.4 nm. Preliminary data indicated that phosphorylation may be closely associated with glucose transport. The dominant intracellular sugar after 4-hours incubation was sucrose when glucose, glucose-6-P, or fructose was the exogenously supplied sugar; but when galactose was supplied, only 28% of intracellular radioactivity was in sucrose. Sorbose, 3-O-methylglucose, and 2-deoxy-d-glucose were not metabolized. Thus, by using these analogs, transport could be studied independently of subsequent metabolism, effectively eliminating a complicating factor in previous studies.  相似文献   

17.
2-C-Methyl-D-erythritol (A) and 2-C-methyl-L-threitol (B) were respectively synthesized from D-glucose and D-galactose. The 2-C-methyl-1,2,3,4-butanetetrol compound (C) recently isolated from Phlox sublata L was confirmed to be A by comparing the CD and 1H-NMR spoectra of its tri-O-benzoate with those of A and B.  相似文献   

18.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

19.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

20.
Studies on a glycopeptide from ovalbumin   总被引:1,自引:1,他引:0  
1. The structure of the carbohydrate component of the glycopeptide isolated from the proteolytic digest of ovalbumin has been investigated by chemical and enzymic methods. 2. The results are consistent with the presence of a single carbohydrate prosthetic group, linked through its reducing end group to the peptide chain. 3. Further, all the 2-amino-2-deoxy-d-glucose units appear to be in the N-acylated form, the phenolic hydroxyl group of tyrosine is free and the ω-carboxyl group of aspartic acid is substituted. 4. The carbohydrate component has a branched-chain structure, the two non-reducing ends being terminated by a d-mannopyranosyl and a 2-acetamido-2-deoxy-d-glucopyranosyl residue respectively. 5. The terminal d-mannopyranosyl unit is probably linked through at least one other d-mannopyranosyl residue to the remainder of the carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号