首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the embryonic development of body-wall musculature in the acoel turbellarian Convoluta pulchra by fluorescence microscopy using phalloidin-bound stains for F-actin. During stage 1, which we define as development prior to 50% of the time between egg-laying and hatching, actin was visible only in zonulae adhaerentes of epidermal cells. Subsequent development of muscle occurred in two distinct phases: first, formation of an orthogonal grid of early muscles and, second, differentiation of other myoblasts upon this grid. The first elements of the primary orthogonal muscle grid appeared as short, isolated, circular muscle fibers (stage 2; 50% developmental time), which eventually elongated to completely encircle the embryo (stage 3; at 60% of total developmental time). The first primary longitudinal fibers appeared later, along with some new primary circular fibers, by 60-63% of total developmental time (stage 4). From 65 to 100% of total developmental time (stages 5 to 7), secondary fibers, using primary fibers as templates, arose; the number of circular and longitudinal muscles thus increased, and at the same time parenchymal muscles began appearing. Hatchlings (stage 8) possessed about 25 circular and 30 longitudinal muscles as well as strong parenchymal muscles. The remarkable feature of the body wall of many adult acoel flatworms is that longitudinal muscles bend medially and cross each other behind the level of the mouth. We found that this development starts shortly after the appearance of the ventral mouth opening within the body wall muscle grid. The adult organization of the body-wall musculature consists of a grid of several hundred longitudinal and circular fibers and a few diagonal muscles. Musculature of the reproductive organs developed after hatching. Thus, extensive myogenesis must occur also during postembryonic development. Comparison between the turbellarians and the annelids suggests that formation of a primary orthogonal muscle grid and its subsequent use as a template for myoblast differentiation are the two basic developmental phases in vermiform Spiralia if not in the Bilateria as a whole. Finally, our new data suggest that for the Acoela the orthogonal primary patterning of longitudinal and circular muscles in the body wall is achieved without using originally positional information of the nervous system.  相似文献   

2.
Orii H  Ito H  Watanabe K 《Zoological science》2002,19(10):1123-1131
The planarian Dugesia japonica has two genes encoding myosin heavy chain, DjMHC-A and B (Kobayashi et al., 1998). We produced antibodies specifically recognizing each myosin heavy chain protein using their carboxyl terminal regions expressed in E. coli as antigens. Immunohistochemical analyses of sections and whole-mount specimens revealed the detailed structure and distribution of each type of muscle fiber in the planarian. In general, the MHC-A muscle fibers were distributed beneath the epithelial layers, namely, they were observable in the pharynx, the mouth, the intestine, the eyes and the body wall. In the pharynx, only MHC-A muscle fibers were present. In contrast, the MHC-B muscle fibers were distributed in the mesenchyme as dorso-ventral and transverse muscles, and in the body wall. The body-wall muscles were composed of an outer layer of circular MHC-A muscles and inner longitudinal and intermediate diagonal MHC-B muscle layers. Thus, two types of muscle fibers were distinguished by their distribution in the planarian.  相似文献   

3.
We report about the muscular system and the serotonergic and FMRFamidergic components of the nervous system of the Bucephalidae trematode, Rhipidocotyle campanula, an intestinal parasite of the pike. We use immunocytochemical methods and confocal scanning laser microscopy (CLSM). The musculature is identified by histochemical staining with fluorescently labeled phalloidin. The body wall musculature of R. campanula contains three layers of muscle fibres – the outer thin circular, intermediate longitudinal and inner diagonal muscle fibres running in two opposite directions. The digestive system of R. campanula possess of a well-developed musculature: radial, longitudinal and circular muscle elements are detected in the pharynx, circular and longitudinal muscle filaments seen in the oesophagus, and longitudinal and the circular muscle fibres were found in the intestinal wall. Specific staining indicating the presence of actin muscle filaments occurs in the cirrus sac localized in the posterior body region. The frontal region of anterior attachment organ, the rhynchus, in R. campanula is represented by radial muscle fibres. The posterior part of the rhynchus comprise of radial muscles forming the organ's wall, and several strong longitudinal muscle bundles. Serotonergic and FMRFamidergic structures are detected in the central and peripheral compartments of the nervous system of R. campanula, that is, in the paired brain ganglia, the brain commissure, the longitudinal nerve cords, and connective nerve commissures. The innervations of the rhynchus, pharynx, oesophagus and distal regions of the reproductive system by the serotonergic and FMRFamidergic nervous elements are revealed. We compare our findings obtained on R. campanula with related data for other trematodes.  相似文献   

4.
We analyzed the adult musculature of two prolecithophoran species, Cylindrostoma monotrochum (von Graff, 1882) and Monoophorum striatum (von Graff, 1878) using a phalloidin-rhodamine technique. As in all rhabdithophoran flatworms, the body-wall musculature consisted of three muscle layers: on the outer side was a layer of circular muscle fibers and on the inner side was a layer of longitudinal muscle fibers; between them were two different types of diagonally orientated fibers, which is unusual for flatworms. The musculature of the pharynx consisted of a basket-shaped grid of thin longitudinal and circular fibers. Thick anchoring muscle fibers forming a petal-like shape connected the proximal parts of the pharynx with the body-wall musculature. Male genital organs consisted of paired seminal vesicles, a granular vesicle, and an invaginated penis. Peculiar ring-shaped muscles were only found in M. striatum, predominantly in the anterior body part. In the same species, seminal vesicles and penis only had circular musculature, while in C. monotrochum also longitudinal musculature was found in these organs. Female genital organs were only present in M. striatum, where we characterized a vagina interna, and a bursa seminalis. Transverse, crossover, and dorsoventral muscle fibers were lacking in the middle of the body and greatly varied in number and position in both species.  相似文献   

5.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

6.
Kajihara  Hiroshi  Gibson  Ray  Mawatari  Shunsuke F. 《Hydrobiologia》2001,456(1-3):187-198
A new genus and species of monostiliferous hoplonemertean, Diopsonemertes acanthocephala gen. et sp. nov., is described from Otsuchi Bay, Japan. Significant anatomical features of the new form include a body wall longitudinal musculature anteriorly divided into inner and outer layers by connective tissue, no pre-cerebral septum, the presence of a thin coat of diagonal muscle fibres between the body wall longitudinal and circular muscle layers in the foregut body region, cephalic retractor muscles derived only from the inner portion of the divided longitudinal muscles and a rhynchocoel more than half the body length.  相似文献   

7.
The pharynx variabilis of Prorhynchus is strongly muscular, with a small pharyngeal fold and a thin surrounding sheath. There is one row of inner longitudinal musclcs, up to six rows of inner circular muscles, many radial muscles, one row of outer circular and one row of outer longitudinal muscles, with no sphincter muscle groups. Three kinds of secretion, produced in a cluster of gland cell bodies posterior to the pharynx, enter the pharynx wall. They travel anteriorly in ducts and two kinds unite in a common duct just prior to discharging into the anterior region of the pharynx lumen. The perikarya of lumen epithelial cells lie within the pharynx musculature and, at the anterior and posterior margins of the pharynx, external to the pharynx. Bundles of ciliated receptors are numerous at the anterior and posterior constrictions. Similarities in the ultrastructure of flame bulbs of Rhabdocoela and Lecithoepitheliata suggest a relationship between these groups. However, the usefulness of pharynx ultrastructure for platyhelminth phylogeny cannot be assessed until complete ultrastructural studies of various groups of Rhabdocoela have been made.  相似文献   

8.
S. Tyler  R. M. Rieger 《Zoomorphology》1999,119(3):127-142
Convoluta pulchra is a small worm living in the surface sediment of mud flats where it feeds on diatoms. It is roughly teardrop in shape with a ventral groove in which the mouth sits, and it can move in a variety of ways, readily distorting its body in bending, twisting, and turning motions. Fluorescently labeled probes for filamentous actin revealed the musculature in whole mounts of the worm. In the body wall, the musculature consisted of a grid of circular, longitudinal crossover (that is, with a longitudinal orientation in the anterior half of the body but arcing medially to cross over to the contralateral side of the body behind the level of the mouth), and a few diagonal fibers. Inside the body was a strong, irregular brush of muscles originating at the rostral tip of the body and anchoring laterally and posteriorly along the body wall, and strong dorsoventral muscles flanked the ventral groove. Two fans of muscles in the ventral and dorsal body wall reached posteriorly and laterally; that on the dorsal side originated at junctures of the dorsoventral muscles with the body wall and that on the ventral body wall originated from the mouth. By their positions, certain groups of muscles could be correlated with given movements: the crossover muscles with some turning motions and feeding, and the inner muscles with probing and retraction motions of the rostrum and with a tuck-and-turn motion the worm used to turn itself around. Electron microscopy showed numerous maculae adherentes junctions linking all muscle types and special junctions linking the musculature with the epidermis. The latter myoepidermal junctions were of dimensions larger than those of maculae adherentes and contained an interlaminar material which we believe represents islands of basal matrix comparable to basement membrane. Accepted: 12 July 1999  相似文献   

9.
Musculature of the free-living stages of Polypodium hydriforme has been studied using phalloidin fluorescence method and confocal microscopy. P. hydriforme is a unique cnidarian possessing only smooth muscle cells situated within the mesoglea, not epithelial muscle cells, like the rest of cnidarians. Phalloidin fluorescence on whole mount preparations demonstrates an extensively developed subepidermal muscle system mostly consisting of long parallel fibers running along the tentacles. For the first time along with contracted muscle fibers we could clearly demonstrate relaxed fibers looking as long spirals. System of thin parallel circular F-actin positive fibers has been discovered outside of longitudinal muscles. The body of the animal and the mouth cone contain weakly developed parallel muscles. No special attachment of the muscle fibers to the tips of the tentacles or to the rim of the mouth has been observed. The results are discussed in connection with the "triploblastic" organization of P. hydriforme and its phylogenetic position.  相似文献   

10.
The musculature of parasitic flatworms plays a central role in locomotory movement, attachment to the host, and in the function of the digestive, reproductive, and excretory systems. We examine for the first time the muscle system of the flatworm Dicrocoelium dendriticum, a causative agent of the parasitic disease dicrocoeliosis, by use of fluorescently labeled phalloidin and confocal laser scanning microscopy. Somatic musculature of D. dendriticum consists of the circular, longitudinal, and diagonal muscles. The distribution of the muscle fibers in the body wall differed among the anterior, middle, and posterior body regions of the worm. The musculature of the attachment organs, the oral and ventral suckers, includes several types of muscles: the external equatorial and meridional muscles, internal circular and semicircular muscles, and radial muscles. Inside of the ventral sucker the diagonally located muscles were revealed and the supplementary u-shaped muscles were found adjoined to the base of the sucker from outside. The musculature of the internal organs composed of the excretory, reproductive, and digestive systems were characterized. Our results increase our knowledge of the morphology of trematodes and the arrangement of their muscle system.  相似文献   

11.
Recent investigations have suggested that a lack of circular muscle fibers may be a common situation rather than a rare exception in polychaetes. As part of a comparative survey of polychaete muscle systems, the F-actin musculature subset of Magelona cf. mirabilis and Prionospio cirrifera were labeled with phalloidin and three-dimensionally analyzed and reconstructed by means of cLSM. Obvious similarities are sublongitudinal lateral, circumbuccal, palp retractor, dominating dorsal longitudinal, perpendicular lateral and ventral transverse muscles. Differences between M. cf. mirabilis and P. cirrifera are: (1) two types of prostomial muscles (transversal and longitudinal) in M. cf. mirabilis versus one type (diagonal) in P. cirrifera; (2) one type of palp muscles (longitudinal) in M. cf. mirabilis versus three types (longitudinal, diagonal, circular) in P. cirrifera; (3) five ventral longitudinal muscles (ventromedian, paramedian, ventral) in M. cf. mirabilis versus four (two paramedian, two ventral) in P. cirrifera. Ventral and lateral transverse fibers are present in the thorax, but absent in the abdomen of M. cf. mirabilis. The triangular lumen of the pharynx in M. cf. mirabilis is surrounded by radial muscle fibers; three sets of pharynx diductors attach to its dorsal side. The unique features of P. cirrifera are one pair of brain muscles and segmentally arranged dorsal transverse muscles, the latter located outside the longitudinal muscles. The transverse lateral muscles are restricted to the sides and lie beneath the longitudinal muscles, a pattern described here for the first time. A true, outer layer of circular fibers is absent in both species of Spionida that were investigated.  相似文献   

12.
Divergent morphologies among related species are often correlated with distinct behaviors and habitat uses. Considerable morphological and behavioral differences are found between two major clades within the polychaete family Opheliidae. For instance, Thoracophelia mucronata burrows by peristalsis, whereas Armandia brevis exhibits undulatory burrowing. We investigate the anatomical differences that allow for these distinct burrowing behaviors, then interpret these differences in an evolutionary context using broader phylogenetic (DNA‐based) and morphological analyses of Opheliidae and taxa, such as Scalibregmatidae and Polygordiidae. Histological three‐dimensional‐reconstruction of A. brevis reveals bilateral longitudinal muscle bands as the prominent musculature of the body. Circular muscles are absent; instead oblique muscles act with unilateral contraction of longitudinal muscles to bend the body during undulation. The angle of helical fibers in the cuticle is consistent with the fibers supporting turgidity of the body rather than resisting radial expansion from longitudinal muscle contraction. Circular muscles are present in the anterior of T. mucronata, and they branch away from the body wall to form oblique muscles. Helical fibers in the cuticle are more axially oriented than those in undulatory burrowers, facilitating radial expansion during peristalsis. A transition in musculature accompanies the change in external morphology from the thorax to the abdomen, which has oblique muscles similar to A. brevis. Muscles in the muscular septum, which extends posteriorly to form the injector organ, act in synchrony with the body wall musculature during peristalsis: they contract to push fluid anteriorly and expand the head region following a direct peristaltic wave of the body wall muscles. The septum of A. brevis is much thinner and is presumably used for eversion of a nonmuscular pharynx. Mapping of morphological characters onto the molecular‐based phylogeny shows close links between musculature and behavior, but less correlation with habitat. J. Morphol. 275:548–571, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.

Background

In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software.

Results

At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. New circular muscles either branch off from present fibres or form adjacent to existing ones. The number of circular muscles is higher than that of the longitudinal muscles throughout all life cycle stages. Diagonal, circular and longitudinal muscles are initially rare but their number increases with time. The ventral side bears U-shaped muscles around the mouth, which in addition is surrounded by a sphincter muscle. With the exception of the region of the statocyst, dorsoventral muscles are present along the entire body of juveniles and adults, while adults additionally exhibit radially oriented internal muscles in the anterior tip. Outer diagonal muscles are present at the dorsal anterior tip of the adult. In adult animals, the male gonopore with its associated sexual organs expresses distinct muscles. No specific statocyst muscles were found. The muscle mantles of the needle-shaped sagittocysts are situated along the lateral edges of the animal and in the posterior end close to the male gonopore. In both juveniles and adults, non-muscular filaments, which stain positively for F-actin, are associated with certain sensory cells outside the bodywall musculature.

Conclusion

Compared to the myoanatomy of other acoel taxa, Symsagittifera roscoffensis shows a very complex musculature. Although data on presumably basal acoel clades are still scarce, the information currently available suggests an elaborated musculature with longitudinal, circular and U-shaped muscles as being part of the ancestral acoel bodyplan, thus increasing the possibility that Urbilateria likewise had a relatively complicated muscular ground pattern.  相似文献   

14.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

15.

Background

The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa.

Results

Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles.

Conclusion

Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.  相似文献   

16.
In an effort to understand how the feeding motions of Urastoma cyprinae are generated, the arrangement of its musculature was studied using fluorescence microscopy of phalloidin‐linked fluorescent stains and conventional light histology and transmission electron microscopy. BODIPY 558/568 phalloidin and Alexa 488 phalloidin resolved a meshwork of ribbon‐shaped body‐wall muscles as well as inner‐body musculature associated with the pharynx and male copulatory organ. The general pattern of body‐wall muscles in U. cyprinae is similar to that of other rhabdocoel turbellarians in consisting only of circular, longitudinal, and diagonal fibers; the arrangement of these muscles readily correlates with the bending motions the animal undergoes as it feeds at the surface of gills in bivalves it parasitizes. The orogenital atrium of U. cyprinae lies at the posterior apex of the body, opening at a terminal pore. As evidenced by the arrangement of its epithelium and musculature, it appears to be an invagination of the body wall and comes closest of any such duct studied in turbellarians to satisfying the hypothetical model of a “pseudopharynx,” ostensibly adapted as an organ for swallowing and so supplementing the ingestive role of the animal's true pharynx. J. Morphol. 241:207–216, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Patterns of musculature as taxonomic characters for the Turbellaria Acoela   总被引:3,自引:1,他引:2  
Tyler  Seth  Hyra  Gregory S. 《Hydrobiologia》1998,383(1-3):51-59
While turbellarians are generally assumed to have body-wall musculature consisting routinely of longitudinal, circular, and diagonal fibers, members of the Acoela examined by a fluorescence-microscopy technique specific for actin showed more complicated and distinctive arrangements of muscles, giving promise for better delimiting taxa within this taxonomically difficult order. Certain globose or tear-drop-shaped worms such as Convoluta pulchra and species of Pseudaphanostoma, Mecynostomum, and Otocelis, showed a complex pattern in which muscles longitudinal in the anterior half of the body arc diagonally across the posterior half; complex brushes of parenchymal muscles that cross at the level of the statocyst and arc postero-laterally also characterize these groups. The more elongate acoel Paratomella sp. was found to have musculature dominated by strictly longitudinal fibers and with relatively weak circular fibers and few fibers running diagonally to the body axis, yet the elongate mecynostomid Paedomecynostomum bruneum showed a crossing of antero-longitudinal fibers similar to that seen in the more globose Mecynostomum sp. A distinctive looping of muscles around the mouth is seen in P. bruneum and the Anaperidae. Such similarities and differences in pattern of musculature promise to provide easily recognizable characters for taxonomy of the Acoela at levels ranging from species to family. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida, Scleroperalia) were reconstructed from whole animals by immunohistochemistry and confocal laser scanning microscopy. The F-actin muscular subset, stained with FITC-labeled phalloidin, consists of: (1) eleven pairs (four ventral, one ventrolateral, one dorsolateral, five dorsal) of longitudinal muscles; (2) two types of diagonal muscles (thin fibers throughout the body, and slightly thicker fibers of which seven pairs occur ventrally and two pairs dorsally); (3) evenly spaced thin circular fibers that gird the posterior half of the body, continuing less prominently into the anterior half; and (4) a complex pharyngeal and genital musculature. Dorsoventral muscles are absent. The organization of the FMRFamidergic nervous system shows: (1) a central nervous system with a frontal ganglion and one pair of longitudinal nerves ending in a terminal commissure, and one median ventral nerve; (2) eight to ten unipolar perikarya above, and up to ten bipolar perikarya in front of the brain; (3) a total of five (one unpaired, two paired) longitudinal nerves of the peripheral nervous system with two to four accompanying perikarya; and (4) a buccal ganglion of the stomatogastric nervous system with six to eight perikarya above the pharyngeal bulbus. Our results reveal the musculature and nervous system of Gnathostomula to be more complex than hitherto reported.  相似文献   

19.
The organization of the dwarf male of Bonellia viridis was studied by electron microscopy. The epidermis is formed by two types of epithelial cells: the majority are multiciliated cells; highly vacuolated, non-ciliated cells are less abundant. The body wall musculature consists of an outer circular, a diagonal, and a longitudinal layer. As a unique feature in coelomate spiralians it was found that the perikarya of all muscle cells are located internal to the entire contractile muscular layer. The muscles are solitary myocytes embedded in extracellular matrix. Masses of secretory and indifferent cells occur inside the muscles. Two types of secretory cells were distinguished. Both of them apparently undergo holocrine secretion. A complete lining of thin peritoneal cells delimits the body cavity. Also, the gut and sperm sac have a complete peritoneal lining. The coelomic lining of the gut is a single-layered myoepithelium, that of the sperm sac a pseudo-stratified myoepithelium. The vas deferens was seen to be ciliated. The entrance of the sperm sac is formed by a ciliated funnel that leads into the reservoir by means of a thin, ciliated canal. The existence of repeated transverse nerves and of four longitudinal nerve cords is described for the first time.  相似文献   

20.
The taxonomy of freshwater pulmonates (Hygrophila) has been in a fluid state warranting the search for new morphological criteria that may show congruence with molecular phylogenetic data. We examined the muscle arrangement in the penial complex (penis and penis sheath) of most major groups of freshwater pulmonates to explore to which extent the copulatory musculature can serve as a source of phylogenetic information for Hygrophila. The penises of Acroloxus lacustris (Acroloxidae), Radix auricularia (Lymnaeidae), and Physella acuta (Physidae) posses inner and outer layers of circular muscles and an intermediate layer of longitudinal muscles. The inner and outer muscle layers in the penis of Biomphalaria glabrata consist of circular muscles, but this species has two intermediate longitudinal layers separated by a lacunar space, which is crossed by radial and transverse fibers. The muscular wall of the penis of Planorbella duryi is composed of transverse and longitudinal fibers, with circular muscles as the outer layer. In Planorbidae, the penial musculature consists of inner and outer layers of longitudinal muscles and an intermediate layer of radial muscles. The penis sheath shows more variation in muscle patterns: its muscular wall has two layers in A. lacustris, P. acuta, and P. duryi, three layers in R. auricularia and Planorbinae and four layers in B. glabrata. To trace the evolution of the penial musculature, we mapped the muscle characters on a molecular phylogeny constructed from the concatenated 18S and mtCOI data set. The most convincing synapomorphies were found for Planorbinae (inner and outer penis layers of longitudinal muscles, three-layered wall of the penis sheath). A larger clade coinciding with Planorbidae is defined by the presence of radial muscles and two longitudinal layers in the penis. The comparative analysis of the penial musculature appears to be a promising tool in unraveling the phylogeny of Hygrophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号