首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine renal brush-border membranes were solubilized by 1.6% sodium cholate. Na+/H(+)-antiporter was recovered in the supernatant after centrifugation at 160,000 x g for 1 h and was successfully reconstituted into proteoliposomes by a cholate-dialysis procedure. The reconstituted Na+/H(+)-antiporter showed a pH-gradient dependent and amiloride-sensitive 22Na+ uptake very similar to that of brush-border membrane vesicles. Factors affecting the efficiency of reconstitution as well as the stability of the solubilized antiporter at various temperatures were studied. Sodium cholate-solubilized brush-border membrane proteins were fractionated by Sephacryl S-400 and DEAE-Toyopearl chromatography, and fractions containing reconstitutively active Na+/H(+)-antiporter were identified. A 110 kDa peptide cross-reactive with a polyclonal antibody against a C-terminal peptide (22-amino acid residues) of human Na+/H(+)-antiporter was consistently found on the immunoblot of the active fractions. A closely similar peptide was also detected in human placental membranes by this antibody. These results strongly suggest that the 110 kDa protein is responsible for Na+/H(+)-antiporter activity.  相似文献   

2.
通过不连续蔗糖密度梯度离心得到的液泡膜微囊 ,先由胆酸钠和 OG分步破膜抽提、经阴离子交换柱 ( Q- Sepharose)层析分离 .纯化后的酶含 V型 H+ - ATPase的主要亚基 ,与大豆磷脂重组 ,获得了有较高泵活性的脂酶体 .脂酶体的质子泵活性受 Valinomycin激活 ,说明它是致电性的 ,受NO-3 ,DCCD以及特异性的 V型 ATPase抑制剂 Bafilomycin的抑制 .脂酶体的泵活性不受 F型和P型 ATPase抑制剂抑制 ,表明质子转运是由 V型 H+ - ATPase引起的 .  相似文献   

3.
L-Leucine is cotransported with H+ in the plasma membrane of Chang liver cells (Mitsumoto, Y. et al. (1986) J. Biol. Chem. 261, 4549). The leucine transport system was solubilized from the plasma membrane of the cells with ocytl glucoside and reconstituted in proteoliposomes prepared by a rapid dilution of a mixture of the solubilized proteins, octyl glucoside and liposomes. The proteoliposomes exhibited H(+)-gradient and electrical potential-stimulated leucine uptake. The H(+)-gradient-stimulated leucine uptake could be completely inhibited by carbonyl cyanide p-trifluoro-methoxyphenylhydrazone (FCCP) and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH). The stimulatory effect of H+ gradient on leucine uptake was shown to be mainly due to decrease of the Km, but not to change of the Vmax, of the transport kinetics. These results suggest that the leucine-H+ cotransporter is solubilized and reconstituted into proteoliposomes.  相似文献   

4.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

5.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

6.
Solubilization and reconstitution of the renal phosphate transporter   总被引:1,自引:0,他引:1  
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.  相似文献   

7.
The effects of N,N'-dicyclohexylcarbodiimide (DCCD) on light-induced H+-transport and transmembrane electric potential (delta phi) formation were studied in the membrane vesicles of Halobacterium halobium R1M1. In accordance with our previous finding of the existence of two DCCD-binding components in vesicle membrane using 14C-DCCD (Konishi & Murakami FEBS Lett. 169, 283-286 (1984)), DCCD inhibited the H+-influx process biphasically; that is, the H+-influx process which is electrically silent was initially inhibited at concentrations below 30 nmol of DCCD/mg vesicle protein, while another H+-influx process which is coupled to delta phi formation was secondarily inhibited above this concentration of DCCD. The latter H+-influx process was highly dependent on the Na+ concentration. The extents of Na+-dependent recovery of delta phi formation and H+-influx were quantitatively correlated. From these results, it was concluded that the second DCCD-sensitive H+-influx process which is coupled to delta phi formation is due to the hypothetical Na+/H+-antiporter postulated by Lanyi and MacDonald (Biochemistry 15, 4608-4614 (1976)). It was also found that Li+ can be substituted for Na+ in this system, as is the case with Na+/H+-antiporters found in other organisms.  相似文献   

8.
The NADH:quinone oxidoreductase (complex I) from Escherichia coli acts as a primary Na+ pump. Expression of a C-terminally truncated version of the hydrophobic NuoL subunit (ND5 homologue) from E. coli complex I resulted in Na+-dependent growth inhibition of the E. coli host cells. Membrane vesicles containing the truncated NuoL subunit (NuoLN) exhibited 2-4-fold higher Na+ uptake activity than control vesicles without NuoLN. Respiratory proton transport into inverted vesicles containing NuoLN decreased upon addition of Na+, but was not affected by K+, indicating a Na+-dependent increase of proton permeability of membranes in the presence of NuoLN. The His-tagged NuoLN protein was solubilized, enriched by affinity chromatography, and reconstituted into proteoliposomes. Reconstituted His6-NuoLN facilitated the uptake of Na+ into the proteoliposomes along a concentration gradient. This Na+ uptake was prevented by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), which acts as inhibitor against Na+/H+ antiporters.  相似文献   

9.
The effects of N,N'-dicyclohexylcarbodiimide (DCCD) and various ionophores on light-induced 22Na+-transport were studied in right-side-out membrane vesicles from Halobacterium halobium R1M1. The light-induced Na+ efflux was inhibited at the same DCCD concentration (greater than 40 nmol/mg protein) as required for inhibition of the Na+-dependent membrane potential (delta phi) formation. This supports our previous indication that the DCCD-sensitive, Na+-dependent transformation of pH-gradient (delta pH) into delta phi is mediated by Na+/H+-antiporter (Murakami, N. and Konishi, T. (1985) J. Biochem. 98, 897-907). FCCP or a combination of valinomycin and triphenyltin (TPT) inhibits the light-induced Na+ efflux in accordance with the notion of protonmotive force (delta mu H+)-driven antiporter. However, a marked lag in initiation of the Na+ efflux occurred in the presence of valinomycin, TPMP+, or a small amount of FCCP, suggesting that a gating step is involved in the Na+ efflux. On the other hand, the delta pH-dissipating ionophore TPT did not cause the lag. A simultaneous determination of delta phi, delta pH, and Na+ efflux rate at the initial stage of illumination revealed that the antiporter is gated by delta phi rather than delta mu H+.  相似文献   

10.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

11.
The K+/H+ exchange activity of the inner mitochondrial membrane was investigated in the yeast Saccharomyces cerevisiae. Swelling experiments in potassium acetate indicated that the K+/H+ exchange was active without any additional treatment after the mitochondria isolation, such as a Mg2+ depletion. As in mammalian mitochondria, the activity of yeast mitochondria was stimulated by increasing pH and was inhibited by the amphiphilic amines quinine and propranolol and by the carboxyl reagent dicyclohexylcarbodiimide. However, the activity was poorly inhibited by Mg2+ and consequently was only slightly stimulated by the Mg2+/H+ exchanger A23187. On the other hand, Zn2+ was very efficient for inhibiting the exchange and consequently the activity was strongly stimulated by the permeant metal-chelator o-phenanthroline. The [86Rb]Rb+ accumulation in mitochondria and mitoplasts was only partially inhibited by quinine and propranolol suggesting that part of the accumulation monitored under these conditions was due to cation leak through the inner membrane together with adsorption on the membrane. The DCCD-sensitive activity could be reconstituted from mitochondria and from mitoplasts solubilized with Triton X-100; this activity, measured by [86Rb]Rb+ accumulation, was quinine- and propranolol-sensitive. A spectrophotometric method, based on the capacity of negatively charged proteoliposomes to swell, was then developed in order to continuously follow the reconstituted activity.  相似文献   

12.
Brush-border membranes of renal proximal tubules were solubilized with deoxycholate and some proteins were separated and incorporated into proteoliposomes by a reconstitution procedure which was analyzed in detail. The proteoliposomes contained mainly polypeptides with molecular weights of 152,000, 94,000, and 52,000, each of which could be separated further into homologous polypeptides with different isoelectric points. In the proteoliposomes, Na+ cotransport systems for D-glucose, acidic and neutral amino acids, and mono- and dicarboxylic acids were demonstrated by showing that due to an inwardly directed Na+ gradient the substrate concentrations in the proteoliposomes increased significantly over their respective equilibrium values. Using inhibition experiments, selectivity of the different transporters could be demonstrated. Studying the reconstituted L-glutamate transporter in detail, countertransport of L-glutamate and K+ was shown (i) at Na+ equilibrium the intraliposomal L-glutamate concentration increased significantly over the equilibrium value if an outside-directed K+ gradient was applied; (ii) Rb+ influx was significantly stimulated by the outflux of L-glutamate. By applying a K+ diffusion potential across the liposomal membrane by addition of valinomycin it could be shown that during L-glutamate transport in the presence of Na+ and K+ positive charge is transferred together with L-glutamate and Na+. The apparent Km value of L-glutamate uptake driven by concentration differences of 89 mM Na+ (out greater than in) and 89 mM K+ (in greater than out) was 26.3 +/- 1.3 microM. The Vmax value of 70.2 +/- 2.3 pmol X mg of protein-1 X S-1 was half the value measured in intact membranes.  相似文献   

13.
Phosphatidylcholine (PC) alone or with phosphatidylethanolamine (PE) are sufficient for the reconstitution of Na+ channels in planar lipid bilayers. However, when Na+ channels were first reconstituted into liposomes using the freeze-thaw-sonication method, addition of acidic phospholipids, such as phosphatidylserine (PS), to the neutral phospholipids was necessary to obtain a significant toxin-modulated 22Na uptake. To further investigate the acidic phospholipid effect on reconstitution into liposomes, Na+ channels purified from Electrophorus electricus electrocytes were reconstituted into liposomes of different composition by freeze-thaw sonication and the effect of batrachotoxin and tetrodotoxin on the 22Na flux was measured. The results revealed that, under our experimental conditions, the presence of an acidic phospholipid was also necessary to obtain a significant neurotoxin-modulated 22Na influx. Though neurotoxin-modulated 22Na fluxes have been reported in proteoliposomes made with purified Na+ channels and PC alone, the 22Na fluxes were smaller than those found using lipid mixtures containing acidic phospholipids. Electron microscopy of negatively stained proteoliposomes prepared with PC, PC/PS (1:1 molar ratio), and PS revealed that the acidic phospholipid increases the size of the reconstituted proteoliposomes. The increment in size caused by the acidic phospholipid, due to the associated increase in internal volume for 22Na uptake and in area for Na+ channel incorporation, appears to be responsible for the large neurotoxin-modulated 22Na fluxes observed.  相似文献   

14.
The citrate carrier of Klebsiella pneumoniae fermenting this substrate has been solubilized from the bacterial membranes with Triton X-100. The transport function was reconstituted by incorporation of the carrier into proteoliposomes using a freeze-thaw sonication procedure. Citrate uptake into these proteoliposomes required the presence of Na+ ions on the outside; the amount of citrate accumulated increased as the external Na+ concentration increased from 0 to 100 mM. Proteoliposomes preloaded with citrate catalyzed citrate counterflow when added to external [14C] citrate. Sodium ions were required for counterflow activity. The kinetics of citrate uptake, counterflow, or efflux were not influenced by an inside negative membrane potential, and the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone was without effect on citrate uptake. The data therefore suggest an electroneutral Na(+)-citrate symport mechanism for the transport of this tricarboxylic acid into K. pneumoniae.  相似文献   

15.
An alanine transport carrier was partially purified from brush border membranes of rabbit small intestine. The alanine carrier activity was not solubilized with 0.4% deoxycholate but recovered in the detergent-insoluble fraction. The detergent-insoluble proteins were reconstituted into proteoliposomes with soybean phospholipids. The reconstituted proteoliposomes were capable of uptake of alanine driven by an electrochemical potential of Na+. The initial rate of alanine uptake into the proteoliposomes was 90 pmoles/mg protein/sec, which was 15-fold higher than that observed with the native membrane vesicles. The uptake of alanine was effectively suppressed by various neutral amino acids but not by either cationic or anionic amino acids.  相似文献   

16.
The Mg2+/2H+ antiporter recently described on lutoid membrane (Z. Amalou, R. Gibrat, C. Brugidou, P. Trouslot, J.d'Auzac [1992] Plant Physiol 100: 255-260) was solubilized by octylglucoside and reconstituted into soybean liposomes using the detergent dilution method. Magnesium efflux or influx experiments were used to generate a H+ influx or efflux, respectively, monitored with the fluorescent probe 9-amino-6-chloro-2-methoxyacridine. Both experiments gave saturable H+ fluxes as a function of internal or external Mg2+ concentrations with similar kinetic parameters Km and Vmax. The Km value for Mg2+ (about 2 mM) was identical to that previously found in lyophilized-resuspended lutoid (reference therein), whereas the Vmax value was 14-fold higher. Since only 10% of the initial proteins were recovered in proteoliposomes, and electrophoretic patterns of the two kinds of vesicles differed significantly, it was inferred that the increase in Vmax was due essentially to an enrichment of the protein antiporter in the reconstituted fraction, owing to a selective effect of octylglucoside at both solubilization and reconstitution steps. None of the various divalent cations used could dissipate the pH gradient of control liposomes of soybean lipids, unless the divalent/H+ exchanger A23187 was added, whereas a rapid dissipation of the pH gradient was observed with reconstituted proteoliposomes from lutoid proteins, with the cation selectivity sequence Zn2+ > Cd2+ > Mg2+ in the millimolar concentration range. The divalent ions Ca2+, Ba2+, and Mn2+ were incapable of generating a H+ efflux in reconstituted proteoliposomes, whereas both Mg2+/H+ and Ca2+/H+ exchanges were observed in lyophilized-resuspended lutoids. Therefore, the lutoid membrane seems to contain separate Mg2+/H+ and Ca2+/H transport systems, the latter being eliminated during the solubilization/reconstitution of lutoid membrane proteins.  相似文献   

17.
A Na+/H+ antiporter coded by the nhaA (ant) gene of Escherichia coli has been overproduced and purified. The amino-terminal sequence of the protein has been determined and shown to correlate with initiation at a GUG codon, 75 bases upstream from the previously suggested AUG initiation codon. The purified protein, when reconstituted into proteoliposomes, has Na+/H+ antiport activity. It can mediate sodium uptake when a transmembrane pH gradient is applied. Downhill sodium efflux is shown to be highly dependent on pH and is accelerated by a transmembrane pH gradient. An imposed membrane potential negative inside accelerates Na+ efflux at all pH values tested. These findings suggest that the antiporter is electrogenic both at acid and alkaline pH. The activation at alkaline pH values (2000-fold increase) is consistent with the proposed role of the antiporter in regulation of internal pH at the alkaline pH range.  相似文献   

18.
The site density of the Na2+-Ca2+ exchanger in bovine cardiac sarcolemma was estimated from measurements of the fraction of reconstituted proteoliposomes exhibiting exchange activity. Sarcolemmal vesicles were solubilized with 1% Triton X-100 in the presence of either 100 mM NaCl or 100 mM KCl; after a 20-40-min incubation period on ice, sufficient KCl, NaCl, CaCl2, and soybean phospholipids were added to each extract to give final concentrations of 40 mM NaCl, 120 mM KCl, 0.1 mM CaCl2, and 10 mg/ml phospholipid. These mixtures were then reconstituted into proteoliposomes, and the rate of 45Ca2+ isotopic exchange was measured under equilibrium conditions. Control studies showed that Na+-Ca2+ exchange activity was completely lost if Na+ was not present during solubilization. The difference in 45Ca2+ uptake between vesicles initially solubilized in the presence or absence of NaCl therefore reflected exchange activity and corresponded to 3.1 +/- 0.3% of the total 45Ca2+ uptake by the entire population of vesicles, as measured in the presence of the Ca2+ ionophore A23187. Assuming that each vesicle with exchange activity contained 1 molecule of the Na+-Ca2+ exchange carrier, a site density of 10-20 pmol/mg of protein for the exchanger was calculated. The Vmax for Na+-Ca2+ exchange activity in the proteoliposomes was approximately 20 nmol/mg of protein.s which indicates that the turnover number of the exchange carrier is 1000 s-1 or more. Thus, the Na+-Ca2+ exchanger is a low density, high turnover transport system.  相似文献   

19.
Reconstitution of a bacterial Na+/H+ antiporter   总被引:1,自引:0,他引:1  
Membrane proteins from alkalophilic Bacillus firmus RAB were extracted with octylglucoside, reconstituted into liposomes made from alkalophile lipids. The proteoliposomes were loaded with 22Na+. Imposition of a valinomycin-mediated potassium diffusion potential, positive out, resulted in very rapid efflux of radioactive Na+ against its electrochemical gradient. That the Na+ efflux was mediated by the electrogenic Na+/H+ antiporter is indicated by the following characteristics that had been established for the porter in previous studies: dependence upon an electrical potential; pH sensitivity, with activity dependent upon an alkaline pH; inhibition by Li+; and an apparent concentration dependence upon Na+ that correlated well with measurements in cells and membrane vesicles.  相似文献   

20.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号