首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P67, a new protein binding to a specific RNA probe, was purified from radish seedlings [Echeverria, M. and Lahmy, S. (1995) Nucleic Acids Res. 23, 4963–4970]. Amino acid sequence information obtained from P67 microsequencing allowed the isolation of genes encoding P67 in radish and Arabidopsis thaliana. Immunolocalisation experiments in transfected protoplasts demonstrated that this protein is addressed to the chloroplast. The RNA-binding activity of recombinant P67 was found to be similar to that of the native protein. A significant similarity with the maize protein CRP1 [Fisk, D.G., Walker, M.B. and Barkan, A. (1999) EMBO J. 18, 2621–2630] suggests that P67 belongs to the PPR family and could be involved in chloroplast RNA processing.  相似文献   

2.
Calexcitin (CE) is a calcium sensor protein that has been implicated in associative learning. The CE gene was previously cloned from the long-finned squid, Loligo pealei, and the gene product was shown to bind GTP and modulate K(+) channels and ryanodine receptors in a Ca(2+)-dependent manner. We cloned a new gene from L. pealei, which encodes a CE-like protein, here named calexcitin B (CE(B)). CE(B) has 95% amino acid identity to the original form. Our sequence analyses indicate that CEs are homologous to the sarcoplasmic calcium-binding protein subfamily of the EF-hand superfamily. Far and near UV circular dichroism and nuclear magnetic resonance studies demonstrate that CE(B) binds Ca(2+) and undergoes a conformational change. CE(B) is phosphorylated by protein kinase C, but not by casein kinase II. CE(B) does not bind GTP. Western blot experiments using polyclonal antibodies generated against CE(B) showed that CE(B) is expressed in the L. pealei optic lobe. Taken together, the neuronal protein CE represents the first example of a Ca(2+) sensor in the sarcoplasmic calcium-binding protein family.  相似文献   

3.
The ascomcete Ceratocystis fimbriata, the causal agent of “canker stain disease,” secretes a protein of 12.4 kDa that elicits phytoalexin synthesis and plant cell death. This protein, named cerato-platanin (CP), is also located in the cell walls of ascospores, hyphae, and conidia; it contains four cysteines (S-S bridged) and is moderately hydrophobic. The cp gene consists of a single exon and has 42 bp codifying for a signal peptide of 14 residues. The recombinant protein was obtained by cloning the cp gene of the mature protein in Escherichia coli (BL21), and a refolding step was needed to achieve the native active form. In the European Molecular Biology data bank, CP is reported as the first member of the CP family; this is the first example of an set of secreted fungal proteins whose primary structure is very similar. Nonetheless, the data also revealed some structural and functional features that make CP simlar to proteins of the hydrophobin family.  相似文献   

4.
5.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

6.
rec mutations result in an extremely low level of recombination and a high frequency of primary non-disjunction in the female meiosis of Drosophila melanogaster. Here we demonstrate that the rec gene encodes a novel protein related to the mini-chromosome maintenance (MCM) proteins. Six MCM proteins (MCM2-7) are conserved in eukaryotic genomes, and they function as heterohexamers in the initiation and progression of mitotic DNA replication. Three rec alleles, rec(1), rec(2) and rec (3), were found to possess mutations within this gene, and P element-mediated germline transformation with a wild-type rec cDNA fully rescued the rec mutant phenotypes. The 885 amino acid REC protein has an MCM domain in the middle of its sequence and, like MCM2, 4, 6 and 7, REC contains a putative Zn-finger motif. Phylogenetic analyses revealed that REC is distantly related to the six conserved MCM proteins. Database searches reveal that there are candidates for orthologs of REC in other higher eukaryotes, including human. We addressed whether rec is involved in DNA repair in the mitotic division after the DNA damage caused by methylmethane sulfonate (MMS) or by X-rays. These analyses suggest that the rec gene has no, or only a minor, role in DNA repair and recombination in somatic cells.  相似文献   

7.
Complementary DNA clones of a putative transforming gene were isolated from NIH 3T3 cells transformed with human Ewing sarcoma DNA. The gene was termed B-raf because it is related to but distinct from c-raf and A-raf. It appears that substitution in the amino-terminal portion of the normal B-raf protein confers transforming activity to the gene.  相似文献   

8.
GCR2 was recently proposed to represent a G-protein-coupled receptor (GPCR) for the plant hormone, abscisic acid (ABA). We and others provided evidence that GCR2 is unlikely to be a bona fide GPCR because it is not clearly predicted to contain seven transmembrane domains, a structural hallmark for classical GPCRs. Instead, GCR2 shows significant sequence similarity to homologs of bacterial lanthionine synthetase component C (LanC). Here, we provide additional analysis of GCR2 and LanC-like (LANCL) proteins in plants, and propose that GCR2 is a new member of the eukaryotic LANCL protein family.Key words: GCR2, G-protein-coupled receptor, abscisic acid (ABA), lanthionine synthetaseSeven transmembrane (7TM) G-protein-coupled receptors (GPCRs) comprise the largest protein family in mammals, and are the most pharmacologically important receptor family, being the target of approximately half of all modern medicinal drugs. All canonical GPCRs are integral membrane proteins and are predicted to contain 7TM-spanning domains as their structural hallmark, a pattern confirmed by the high-resolution crystal structure of human β2-adrenergic GPCR.1,2 GPCRs sense extracellular molecules and activate intracellular cell signaling via coupling with heterotrimeric G-proteins. Heterotrimeric G-protein subunits are conserved in plants, but the repertoire of heterotrimeric G-protein complexes to which they contribute in plants is much simpler than in mammals.3,4 Liu et al. (2007) proposed that GCR2 is a GPCR for the plant hormone abscisic acid (ABA) in Arabidopsis.5 However, GCR2 was predicted not to be a 7TM protein when its amino acid sequence was analyzed in robust transmembrane prediction systems.6,7 On the other hand, GCR2 has significant sequence similarity to homologs of bacterial lanthionine synthetase component C (LanC) that are found in diverse eukaryotes and which have predicted structural similarity to prokaryotic LanC.6,7 These findings raise the possibility that GCR2 belongs to the LanC protein superfamily, rather than the GPCR superfamily.  相似文献   

9.
10.
Fesselin is a natively unfolded protein that is abundant in avian smooth muscle. Like many natively unfolded proteins, fesselin has multiple binding partners including actin, myosin, calmodulin and α-actinin. Fesselin accelerates actin polymerization and bundles actin. These and other observations suggest that fesselin is a component of the cytoskeleton. We have now cloned fesselin and have determined the cDNA derived amino acid sequence. We verified parts of the sequence by Edman analysis and by mass spectroscopy. Our results confirmed fesselin is homologous to human synaptopodin 2 and belongs to the synaptopodin family of proteins.  相似文献   

11.
MafT, a new member of the small Maf protein family in zebrafish   总被引:3,自引:0,他引:3  
Small Maf proteins play critical roles on morphogenesis and homeostasis through associating with CNC proteins. To date, three small Maf proteins, MafF, MafG, and MafK, have been reported in vertebrates, which share redundant functions. In this study, we tried to identify and characterize small Maf proteins in zebrafish to elucidate their conservation and diversity in the fish kingdom. We identified homolog genes of MafG and MafK but not MafF in zebrafish, indicating the former two are conserved among vertebrates. In addition, a novel type of small Maf protein MafT was identified. MafT protein bound MARE sequence as a homodimer or heterodimers with zebrafish Nrf2 or p45 Nfe2. Co-overexpression of MafT and Nrf2 synergistically activated MARE-mediated gene expression in zebrafish embryos. These results indicated that MafT is a new member of small Maf proteins and involved in the Nrf2-dependent gene regulation in cellular defense system.  相似文献   

12.
The complete nucleotide sequence (321 bp) of smr (staphylococcal multidrug resistance), a gene coding for efflux-mediated multidrug resistance of Staphylococcus aureus, was determined by using two different plasmids as DNA templates. The smr gene product (identical to products of ebr and qacC/D genes) was shown to be homologous to a new family of small membrane proteins found in Escherichia coli, Pseudomonas aeruginosa, Agrobacterium tumefaciens, and Proteus vulgaris. The smr gene was subcloned and expressed in S. aureus and E. coli and its ability to confer the multidrug resistant phenotype was demonstrated for two different lipophilic cation classes: phosphonium derivatives and quarternary amines. Expression of smr gene leads to the efflux of tetraphenylphosphonium and to a net decrease in the uptake of lipophilic cations. The deduced polypeptide sequence (107 amino acid residues, 11,665 kDa) has 46% hydrophobic residues (Phe, Ile, Leu, and Val) and 20% hydroxylic residues (Ser and Thr). Four transmembrane segments are predicted for smr gene product. Of the charged amino acid residues, only Glu 13 is located in a transmembrane segment. This Glu 13 is conserved in all members of the family of small membrane proteins. We propose a mechanism whereby exchange of protons at the Glu 13 is a key in the efflux of the lipophilic cation. This mechanism includes the idea that protons are transported to the Glu 13 via an appropriate chain of hydroxylic residues in the transmembrane segments of Smr.  相似文献   

13.
14.
Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor κB ligand (RANKL) or tumor necrosis factor (TNF)-α. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D3 and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.  相似文献   

15.
16.
Ypt/Rabs are Ras-related GTPases that function as key regulators of intracellular vesicular trafficking. Their slow intrinsic rates of GTP hydrolysis are catalyzed by GTPase-activating proteins (GAPs). Ypt/Rab-GAPs constitute a family of proteins that contain a TBC (Tre-2/Bub2/Cdc16) domain. Only three of the 51 family members predicted in the human genome are confirmed Ypt/Rab-GAPs. Here, we report the identification and characterization of a novel mammalian Ypt/Rab-GAP, TBC domain family, member 15 (TBC1D15). TBC1D15 is ubiquitously expressed and localized predominantly to the cytosol. The TBC domain of TBC1D15 exhibits relatively high homology with that of Gyp7p, a yeast Ypt/Rab-GAP. Furthermore, TBC1D15 stimulates the intrinsic GTPase activity of Rab7, and to a lesser extent Rab11, but is essentially inactive towards Rab4 or Rab6. These data increase the number of mammalian TBC domain family members with demonstrated Rab-GAP activity to four, and suggest that TBC1D15 may be involved in Rab7-mediated late endosomal trafficking.  相似文献   

17.
18.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell.  相似文献   

19.
20.
More than 300 separated actions have been attributed to prolactin (PRL), which could be correlated to the quasi-ubiquitous distribution of its receptor. Null mutation of the PRL receptor (PRLR) gene leads to female sterility caused by a failure of embryo implantation. Using the PRLR knockout mouse model and the mRNA differential display method, among 45 isolated genes, we identified UA+4 as a PRL and steroids-target gene during the peri-implantation period that encodes the decysin. Hormonally regulated in the uterus during pregnancy, this new member of disintegrin metalloproteinase is present in the uterus at the site of blastocyst apposition in nondifferentiated stromal cells at the antimesometrial pole and, interestingly, is colocalized with the PRLR. At midpregnancy, decysin expression persists specifically at the foeto-maternal junction around vessels. Although it has been previously suggested that decysin expression is related to immune function, its function during pregnancy remains to be clearly established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号