首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO2 fixation during photosynthesis is regulated by the activity of ribulose bisphosphate carboxylase (Rubisco). This conclusion became more apparent to me after CO2-fixation experiments using isolated spinach chloroplasts and protoplasts, purified Rubisco enzyme, and intact leaves. Ribulose bisphosphate (RuBP) pools and activation of Rubisco were measured and compared to 14CO2 fixation in light. The rates of 14CO 2 assimilation best followed the changes in Rubisco activation under moderate to high light intensities. RuBP pool sizes regulated 14 2 assimilation only in very high CO2 levels, low light and in darkness. Activation of Rubisco involves two separate processes: carbamylation of the protein and removal of inhibitors blocking carbamylation or blocking RuBP binding to carbamylated sites before reaction with CO2 or O2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Zhu G  Jensen RG 《Plant physiology》1991,97(4):1354-1358
Loss of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity during CO2 fixation, called fallover, occurred with or without loss of activator CO2 from catalytic sites depending on pH. At pH 7.5, but not at pH 8.5, the fraction of Rubisco sites that were carbamylated decreased during fallover. Inhibitors which formed during fallover were identified following NaBH4 reduction and separation of the products by high performance anion-exchange chromatography and pulsed amperometric detection. They were xylulose 1,5-bisphosphate (XuBP) and 3-ketoarabinitol 1,5-bisphosphate. During fallover at pH 8.5, 3-ketoarabinitol-P2 was the only inhibitor binding to Rubisco and this binding was at carbamylated sites, although both inhibitors were made. At pH 7.5, both inhibitors were bound to catalytic sites of Rubisco with XuBP bound tightly to decarbamylated sites, whereas 3-ketoarabinitol-P2 bound to carbamylated sites. The pH during fallover also influenced the ratio of 3-ketoarabinitol-P2 to XuBP formed. When fallover occurred at pH 7.5, both the formation of XuBP and its binding affinity to decarbamylated Rubisco sites were increased compared with those at pH 8.5. 3-Ketoribitol-P2 was not found at either pH.  相似文献   

3.
Zhu G  Jensen RG 《Plant physiology》1990,93(1):244-249
The properties of the tight and specific binding of 2-C-carboxy-d-arabinitol 1,5-bisphosphate (CABP), which occurs only to reaction sites of ribulose 1,5-bisphosphate carboxylase (Rubisco) that are activated by CO2 and Mg2+, were studied. With fully active purified spinach (Spinacia oleracea) Rubisco the rate of tight binding of [14C]CABP fit a multiple exponential rate equation with half of the sites binding with a rate constant of 40 per minute and the second half of the sites binding at 3.2 per minute. This suggests that after CABP binds to one site of a dimer of Rubisco large subunits, binding to the second site is considerably slower, indicating negative cooperativity as previously reported (S Johal, BE Partridge, R Chollet [1985] J Biol Chem 260: 9894-9904). The rate of CABP binding to partially activated Rubisco was complete within 2 to 5 minutes, with slower binding to inactive sites as they formed the carbamate and bound Mg2+. Addition of [14C]CABP and EDTA stopped binding of Mg2+ and allowed tight binding of the radiolabel only to sites which were CO2/Mg2+-activated at that moment. This approach estimated the amount of CO2/Mg2+-activated sites in the presence of inactive sites and carbamylated sites lacking Mg2+. The rate of CO2 fixation was proportional to the CO2/Mg2+-activated sites. During light-dependent CO2 fixation with isolated spinach chloroplasts, the amount of carbamylation was proportional to Rubisco activity either initially upon lysis of the plastids or following total activation with Mg2+ and CO2. Lysis of chloroplasts in media with [14C]CABP plus EDTA estimated those carbamylated sites having Mg2+. The loss of Rubisco activation during illumination was partially due to the lack of Mg2+ to stabilize the carbamylated sites.  相似文献   

4.
Using gas exchange, enzyme assays, and theoretical modeling of photosynthetic responses to light and CO2, we investigated whether decarbamylation of the active site of Rubisco at low CO2 and low light leads to a condition where the activation state of Rubisco directly limits the rate of net CO2 assimilation. Photosynthetic limitation by a reduction in the activation state of Rubisco would be indicated as a decline in the initial slope of the photosynthetic CO2 response relative to what is predicted using theoretical models. In bean (Phaseolus vulgaris) and oat (Avena sativa), we saw no discrepancy between predicted and observed initial slope values at 200 and 400 mbar O2, indicating no limitation by the carbamylation state of Rubisco. At 30 mbar O2 and light saturation, we also saw no discrepancy between predicted and observed initial slope values; however, at subsaturating light intensity, our observed initial slope values were less than the modeled initial slope values that corresponded to an RuBP regeneration limitation. Moreover, significant reduction of the Rubisco activation state occurred in both species at 30 mbar O2 and 30 μbar CO2. When the model was reprogrammed to account for observed levels of Rubisco deactivation, the predicted and measured initial slope values at low O2 and low PPFD were similar, indicating the reduction in carbamylation state accounted for the discrepancy. We interpret this as evidence for a direct limitation of the carbamylation state of Rubisco, probably because of a CO2 limitation for carbamate formation. This limitation was only observed at intercellular CO2 levels below what is encountered in vivo. At physiologically relevant CO2 levels in situ, the leaves maintained sufficient Rubisco activity to avoid cabamylation state limitations in the steady state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

6.
Farazdaghi H 《Bio Systems》2011,103(2):265-284
Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg2+, and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO2 and/or O2 and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO2 levels such as CO2 compensation point, or RuBP regeneration-limited at high CO2. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO2 compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at night, it leads to progressively negative daily CO2 fixation with no possibility of oxygenic life on the planet. The Rubisco-limited theory at low CO2 also contradicts all experimental evidence for low substrate reactions, and for all known enzymes, Rubisco included.  相似文献   

7.
G. F. Wildner  J. Henkel 《Planta》1979,146(2):223-228
Ribulose-1,5-bisphosphate carboxylase-oxygenase is deactivated by removal of Mg++. The enzyme activities can be restored to a different extent by the addition of various divalent ions in the presence of CO2. Incubation with Mg++ and CO2 restores both enzyme activities, whereas, the treatment of the enzyme with the transition metal ions (Mn++, Co++, and Ni++) and CO2 fully reactivates the oxygenase: however, the carboxylase activity remains low. In experiments where CO2-free conditions were conscientiously maintained, no reactivation of RuBP oxygenase was observed, although Mn++ ions were present. Other divalent cations such as Ca++ and Zn++, restore neither the carboxylase nor the oxygenase reaction. Furthermore, the addition of Mn++ to the Mg++ and CO2 preactivated enzyme significantly inhibited carboxylase reactions, but increased the oxygenase reaction.Abbreviation RuBP ribulose-1,5-bisphosphate. The enyme unit for RuBP carboxylase is defined as mol CO2 fixed·min-1 and for the RuBP oxygenase as mol O2 consumed · min-1  相似文献   

8.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

9.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

10.
Lasa  B.  Frechilla  S.  Aleu  M.  González-Moro  B.  Lamsfus  C.  Aparicio-Tejo  P.M. 《Plant and Soil》2000,225(1-2):167-174
The effect of the nitrogen source (ammonium and nitrate) and its interaction with magnesium on various physiological processes was studied in sunflower plants (Helianthus annuusL.). Plants were grown in hydroponic culture with nitrate (5 mM) or ammonium (5 mM) and four concentrations of magnesium (0.1, 0.8, 5 and 10 mM). After 2 weeks, growth, gas exchange and fluorescence parameters, soluble carbohydrates, free amino acids, soluble protein and mineral elements were determined. Ammonium nutrition resulted in a reduction of dry matter accumulation, as well as in a decrease in the CO2 assimilation. Moreover, ammonium-fed plants showed a greater content of free amino acids, soluble protein, Rubisco and anions, and a lower cation content, mostly Mg2+. The presence of high levels of Mg2+ in the nutrient solution containing NH4 + resulted in a stimulation of growth and CO2 assimilation to the levels observed in nitrate-fed plants. The lower photosynthetic rate of ammonium-fed plants grown with low level of magnesium does not seem to be due to a lower photosynthetic pigment content, or a deficiency in Photosystem II activity, or to lower Rubisco content. Hence, Rubisco activity or other enzymes involved in CO2 fixation could have been affected in ammonium-fed plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
To understand the plant response to oxidative stresses, we studied the influence of magnesium (Mg++) deficiency on the formation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and protease activity in kidney bean plants. The expression pattern of proteins under Mg++ deficiency also was examined via two-dimensional electrophoresis. The formation of H2O2 and MDA increased in the primary leaves of plants grown in a nutrient solution deficient in Mg++. Protease activity in Mg++-deficient plants was also higher than in those grown with sufficient Mg++. The expression pattern of the proteins showed that 25 new proteins were generated and 64 proteins disappeared under Mg++-deficient conditions. Therefore, a deficiency in Mg++ may cause oxidative stress and a change in protein expression. Some of these proteins may be related to the oxidative stress induced by Mg++ deficiency.  相似文献   

12.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. The elevated CO2 concentrations increased the initial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity of both species for the first 5 weeks of treatment but the difference did not persist during the last 5 weeks. The activity of Mg2+-CO2-activated Rubisco was higher in 900 microliters per liter for the first 2 weeks but declined sharply thereafter. After 10 weeks, leaves grown at 330 microliters per liter CO2 had about twice the Rubisco activity compared with those grown at 900 microliters per liter CO2. The two species showed the same trend to Rubisco declines under high CO2 concentrations. The percent activation of Rubisco was always higher under high CO2. The phosphoenolpyruvate carboxylase (PEPCase) activity measured in tomato leaves averaged 7.9% of the total Rubisco. PEPCase showed a similar trend with time as the initial Rubisco but with no significant difference between nonenriched and CO2-enriched plants. Long-term exposure of tomato plants to high CO2 was previously shown to induce a decline of photosynthetic efficiency. Based on the current study and on previous results, we propose that the decline of activated Rubisco is the main cause of the acclimation of tomato plants to high CO2 concentrations.  相似文献   

13.
d-Ribulose-1,5-bisphosphate carboxylase fromThiobacillus neapolitanus was isolated by differential centrifugation, sucrose density gradient centrifugation, and DEAE-Sephadex column chromatography. The specific activity of the purified enzyme was 2.8 μmol CO2 fixed/min/mg protein. The enzyme's homogeneity was indicated by a single migrating band during polyacrylamide disc gel electrophoresis and as a single symmetrical schlieren peak that sedimented at a constant rate during ultracentrifugation. TheS 20,w was 18.2; the molecular weight, 500,000±20.000. Sodium dodecyl sulfate polyacrylamide disc gel electrophoresis resolved two polypeptide chains of 55,000 and 11,000 daltons. The pH optimum 0f 7.75 with 9 mM MgCl2 shifted to 7.45 with 59 mM MgCl2. Enzyme dialyzed free of Mg++ was inactive and no other divalent cation substituted for Mg++. TheK m (Mg++),K m (CO2), andK m (RuBP) were 0.59 mM, 0.85 mM, and 0.092 mM, respectively. The inhibition by 6-phosphogluconate was competitive and no stimulation of activity could be demonstrated.  相似文献   

14.
Crafts-Brandner SJ  Law RD 《Planta》2000,212(1):67-74
Experiments were conducted to determine the relative contributions of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) activation state vis-à-vis Rubisco activase and metabolite levels to the inhibition of cotton (Gossypium hirsutum L.) photosynthesis by heat stress. Exposure of leaf tissue in the light to temperatures of 40 or 45 °C decreased the activation state of Rubisco to levels that were 65 or 10%, respectively, of the 28 °C control. Ribulose-1,5-bisphosphate (RuBP) levels increased in heat-stressed leaves, whereas the 3-phosphoglyceric acid pool was depleted. Heat stress did not affect Rubisco per se, as full activity could be restored by incubation with CO2 and Mg2+. Inhibition and recovery of Rubisco activation state and carbon dioxide exchange rate (CER) were closely related under moderate heat stress (up to 42.5 °C). Moderate heat stress had negligible effect on Fv/Fm, the maximal quantum yield of photosystem II. In contrast, severe heat stress (45 °C) caused significant and irreversible damage to Rubisco activation, CER, and Fv/Fm. The rate of Rubisco activation after alleviating moderate heat stress was comparable to that of controls, indicating rapid reversibility of the process. However, moderate heat stress decreased both the rate and final extent of CER activation during dark-to-light transition. Treatment of cotton leaves with methyl viologen or an oxygen-enriched atmosphere reduced the effect of heat stress on Rubisco inactivation. Both treatments also reduced tissue RuBP levels, indicating that the amount of RuBP present during heat stress may influence the degree of Rubisco inactivation. Under both photorespiratory and non-photorespiratory conditions, the inhibition of the CER during heat stress could be completely reversed by increasing the internal partial pressure of CO2 (Ci). However, the inhibition of the CER by nigericin, a K+ ionophore, was not reversible when the Ci was increased at ambient or high temperature. Our results indicate that inhibition of photosynthesis by moderate heat stress is not caused by inhibition of the capacity for RuBP regeneration. We conclude that heat stress inhibits Rubisco activation via a rapid and direct effect on Rubisco activase, possibly by perturbing Rubisco activase subunit interactions with each other or with Rubisco. Received: 25 February 2000 / Accepted: 13 May 2000  相似文献   

15.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

16.
The present study characterizes the kinetic properties of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) from 28 terrestrial plant species, representing different phylogenetic lineages, environmental adaptations and photosynthetic mechanisms. Our findings confirm that past atmospheric CO2/O2 ratio changes and present environmental pressures have influenced Rubisco kinetics. One evolutionary adaptation to a decreasing atmospheric CO2/O2 ratio has been an increase in the affinity of Rubisco for CO2 (Kc falling), and a consequent decrease in the velocity of carboxylation (kcatc), which in turn has been ameliorated by an increase in the proportion of leaf protein accounted by Rubisco. The trade‐off between Kc and kcatc was not universal among the species studied and deviations from this relationship occur in extant forms of Rubisco. In species adapted to particular environments, including carnivorous plants, crassulacean acid metabolism species and C3 plants from aquatic and arid habitats, Rubisco has evolved towards increased efficiency, as demonstrated by a higher kcatc/Kc ratio. This variability in kinetics was related to the amino acid sequence of the Rubisco large subunit. Phylogenetic analysis identified 13 residues under positive selection during evolution towards specific Rubisco kinetic parameters. This crucial information provides candidate amino acid replacements, which could be implemented to optimize crop photosynthesis under a range of environmental conditions.  相似文献   

17.
Ribulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations and their interactions on the photosynthetic limitation by RuBP regeneration. Soybean (Glycine max [L.] Merr. cv. Essex) was grown from seed to maturity in open-top field chambers in charcoal-filtered air (CF) either without (22 nmol O3 mol?1) or with added O3 (83 nmol mol?1) at ambient (AA, 369 μmol CO2 mol?1) or elevated CO2 (710 μmol mol?1). The RuBP pool size generally declined with plant age in all treatments when expressed on a unit leaf area and in all treatments but CF-AA when expressed per unit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) binding site. Although O3 in ambient CO2 generally reduced the RuBP pool per unit leaf area, it did not change the RuBP pool per unit Rubisco binding site. Elevated CO2, in CF or O3-fumigated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools were below 2 mol mol?1 binding site in all treatments for most of the season, indicating limiting RuBP regeneration capacity. These low RuBP pools resulted in increased RuBP regeneration via faster RuBP turnover, but only in CF air and during vegetative and flowering stages at elevated CO2. Also, the low RuBP pool sizes did not always reflect RuBP consumption rates or the RuBP regeneration limitation relative to potential carboxylation (%RuBP). Rather, %RuBP increased linearly with decrease in the RuBP pool turnover time. These data suggest that amelioration of damage from O3 by elevated atmospheric CO2 to the RuBP regeneration may be in response to changes in the Rubisco carboxylation.  相似文献   

18.
Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol?1 cyt f s?1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol?1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C.  相似文献   

19.
The regulation of Rubisco activity was investigated under high, constant photosynthetic photon flux density during the diurnal phases of Crassulacean acid metabolism in Kalanchoë daigremontiana Hamet et Perr. During phase I, a significant period of nocturnal, C4-mediated CO2 fixation was observed, with the generated malic acid being decarboxylated the following day (phase III). Two periods of daytime atmospheric CO2 fixation occurred at the beginning (phase II, C4–C3 carboxylation) and end (phase IV, C3–C4 carboxylation) of the day. During the 1st h of the photoperiod, when phosphoenolpyruvate carboxylase was still active, the highest rates of atmospheric CO2 uptake were observed, coincident with the lowest rates of electron transport and minimal Rubisco activity. Over the next 1 to 2 h of phase II, carbamylation increased rapidly during an initial period of decarboxylation. Maximal carbamylation (70%–80%) was reached 2 h into phase III and was maintained under conditions of elevated CO2 resulting from malic acid decarboxylation. Initial and total Rubisco activity increased throughout phase III, with maximal activity achieved 9 h into the photoperiod at the beginning of phase IV, as atmospheric CO2 uptake recommenced. We suggest that the increased enzyme activity supports assimilation under CO2-limited conditions at the start of phase IV. The data indicate that Rubisco activity is modulated in-line with intracellular CO2 supply during the daytime phases of Crassulacean acid metabolism.  相似文献   

20.
Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (τ) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high τ have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and τ exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing τ result in increased leaf and canopy photosynthesis? A steady‐state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose‐1,5‐bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in τ will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in τ on Rubisco‐limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and τ, the simulations showed that a decrease, not an increase, in τ increases Rubisco‐limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light‐limited and light‐saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average τ found in C3 terrestrial plants is supra‐optimal for the present atmospheric [CO2] of 370 µmol mol?1, but would be optimal for a CO2 concentration of around 200 µmol mol?1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal τ would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and τ, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well‐defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher τ or higher kcc were successfully expressed in C3 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号