首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

2.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   

3.
Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.  相似文献   

4.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

5.
Cells are highly organized machines with functionally specialized compartments. For example, membrane proteins are localized to axons or dendrites in neurons and to apical or basolateral surfaces in epithelial cells. Interestingly, many sensory cells—including vertebrate photoreceptors and olfactory neurons—exhibit both neuronal and epithelial features. Here, we show that Caenorhabditis elegans amphid neurons simultaneously exhibit axon-dendrite sorting like a neuron and apical-basolateral sorting like an epithelial cell. The distal ∼5–10 µm of the dendrite is apical, while the remainder of the dendrite, soma, and axon are basolateral. To determine how proteins are sorted among these compartments, we studied the localization of the conserved adhesion molecule SAX-7/L1CAM. Using minimal synthetic transmembrane proteins, we found that the 91-aa cytoplasmic tail of SAX-7 is necessary and sufficient to direct basolateral localization. Basolateral localization can be fully recapitulated using either of 2 short (10-aa or 19-aa) tail sequences that, respectively, resemble dileucine and Tyr-based motifs known to mediate sorting in mammalian epithelia. The Tyr-based motif is conserved in human L1CAM but had not previously been assigned a function. Disrupting key residues in either sequence leads to apical localization, while “improving” them to match epithelial sorting motifs leads to axon-only localization. Indeed, changing only 2 residues in a short motif is sufficient to redirect the protein between apical, basolateral, and axonal localization. Our results demonstrate that axon-dendrite and apical-basolateral sorting pathways can coexist in a single cell, and suggest that subtle changes to short sequence motifs are sufficient to redirect proteins between these pathways.  相似文献   

6.
In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular locations when Madin-Darby canine kidney cells lose their cellular polarity. Apical SNAREs relocalize to the previously characterized vacuolar apical compartment, whereas basolateral SNAREs redistribute to a novel organelle that appears to be the basolateral equivalent of the vacuolar apical compartment. Both intracellular plasma membrane compartments have an associated prominent actin cytoskeleton and receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings demonstrate a fundamental shift in plasma membrane traffic toward intracellular compartments while protein sorting is preserved when epithelial cells lose their cell polarity.  相似文献   

7.
A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.  相似文献   

8.
B Aroeti  K E Mostov 《The EMBO journal》1994,13(10):2297-2304
Polarized epithelial cells can sort plasma membrane proteins to the apical or basolateral domain either by direct targeting from the trans-Golgi network (TGN) or by targeting to one surface, followed by endocytosis and transcytosis to the opposite surface. In Madin-Darby canine kidney (MDCK) cells, targeting of the polymeric immunoglobulin receptor (pIgR) to the basolateral surface is controlled by a sorting signal residing in the membrane proximal 17 amino acids of the cytoplasmic domain of this receptor. We have recently found that individual mutations at any of three residues in this signal, His656, Arg657 and Val660, substantially decrease targeting from the TGN to the basolateral surface and correspondingly increase targeting from the TGN to the apical surface. Here we report that these mutations decrease the recycling of basolaterally endocytosed pIgR to that surface, and correspondingly increase its transcytosis to the apical surface. This effect occurred in mutant pIgRs that either contained the full-length cytoplasmic domain or were truncated to contain only the 17-residue basolateral targeting signal, and was independent of phosphorylation of pIgR at Ser664. Our results indicate that polarized sorting of the pIgR in the endocytotic and exocytotic pathways are controlled by the same amino acids.  相似文献   

9.
Endocytosis in filter-grown Madin-Darby canine kidney cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1989,109(6):3243-3258
In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell.  相似文献   

10.
We studied the sorting and surface delivery of three apical and three basolateral proteins in the polarized epithelial cell line Caco-2, using pulse-chase radiolabeling and surface domain-selective biotinylation (Le Bivic, A., F. X. Real, and E. Rodriguez-Boulan. 1989. Proc. Natl. Acad. Sci. USA. 86:9313-9317). While the basolateral proteins (antigen 525, HLA-I, and transferrin receptor) were targeted directly and efficiently to the basolateral membrane, the apical markers (sucrase-isomaltase [SI], aminopeptidase N [APN], and alkaline phosphatase [ALP]) reached the apical membrane by different routes. The large majority (80%) of newly synthesized ALP was directly targeted to the apical surface and the missorted basolateral pool was very inefficiently transcytosed. SI was more efficiently targeted to the apical membrane (greater than 90%) but, in contrast to ALP, the missorted basolateral pool was rapidly transcytosed. Surprisingly, a distinct peak of APN was detected on the basolateral domain before its accumulation in the apical membrane; this transient basolateral pool (at least 60-70% of the enzyme reaching the apical surface, as measured by continuous basal addition of antibodies) was efficiently transcytosed. In contrast with their transient basolateral expression, apical proteins were more stably localized on the apical surface, apparently because of their low endocytic capability in this membrane. Thus, compared with two other well-characterized epithelial models, MDCK cells and the hepatocyte, Caco-2 cells have an intermediate sorting phenotype, with apical proteins using both direct and indirect pathways, and basolateral proteins using only direct pathways, during biogenesis.  相似文献   

11.
ABSTRACT: BACKGROUND: Increased expression of the pro-fibrotic protein connective tissue growth factor (CTGF) has been detected in injured kidneys and elevated urinary levels of CTGF are discussed as prognostic marker of chronic kidney disease. There is evidence that epithelial cells lining the renal tubular system contribute to uptake and secretion of CTGF. However, the role of different types of tubular epithelial cells in these processes so far has not been addressed in primary cultures of human cells. RESULTS: Tubular epithelial cells of proximal and distal origin were isolated from human kidneys and cultured as polarized cells in insert wells. The pro-fibrotic stimuli lysophosphatidic acid (LPA) and transforming growth factor beta (TGF-beta) were used to induce CTGF secretion.LPA activated CTGF secretion in proximal tubular cells when applied from either the apical or the basolateral side as shown by immunocytochemistry. CTGF was secreted exclusively to the apical side. Signaling pathways activated by LPA included MAP kinase and Rho kinase signaling. TGF-beta applied from either side also stimulated CTGF secretion primarily to the apical side with little basolateral release.Interestingly, TGF-beta activation induced different signaling pathways depending on the side of TGF-beta application. Smad signaling was almost exclusively activated from the basolateral side most prominently in cells of distal origin. Only part of these cells also synthesized CTGF indicating that Smad activation alone was not sufficient for CTGF induction. MAP kinases were involved in apical TGF-beta-mediated activation of CTGF synthesis in proximal cells and a subset of epithelial cells of distal origin. This subpopulation of distal tubular cells was also able to internalize recombinant apical CTGF, in addition to proximal cells which were the main cells to take up exogenous CTGF. CONCLUSIONS: Analysis of polarized human primary renal epithelial cells in a transwell system shows that vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-beta and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.  相似文献   

12.
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.  相似文献   

13.
Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans‐Golgi network is a well‐established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post‐endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post‐endocytic pools of this protein are subjected to distinct sorting processes.   相似文献   

14.
The composition of the plasma membrane domains of epithelial cells is maintained by biosynthetic pathways that can sort both proteins and lipids into transport vesicles destined for either the apical or basolateral surface. In MDCK cells, the influenza virus hemagglutinin is sorted in the trans-Golgi network into detergent-insoluble, glycosphingolipid-enriched membrane domains that are proposed to be necessary for sorting hemagglutinin to the apical cell surface. Site- directed mutagenesis of the hemagglutinin transmembrane domain was used to test this proposal. The region of the transmembrane domain required for apical transport included the residues most conserved among hemagglutinin subtypes. Several mutants were found to enter detergent-insoluble membranes but were not properly sorted. Replacement of transmembrane residues 520 and 521 with alanines converted the 2A520 mutant hemagglutinin into a basolateral protein. Depleting cell cholesterol reduced the ability of wild-type hemagglutinin to partition into detergent-insoluble membranes but had no effect on apical or basolateral sorting. In contrast, cholesterol depletion allowed random transport of the 2A520 mutant. The mutant appeared to lack sorting information but was prevented from reaching the apical surface when detergent-insoluble membranes were present. Apical sorting of hemagglutinin may require binding of either protein or lipids at the middle of the transmembrane domain and this normally occurs in detergent-insoluble membrane domains. Entry into these domains appears necessary, but not sufficient, for apical sorting.  相似文献   

15.
Most metazoan cells are 'polarized'. A crucial aspect of this polarization is that the plasma membrane is divided into two or more domains with different protein and lipid compositions or example, the apical and basolateral domains of epithelial cells or the axonal and somatodendritic domains of neurons. This polarity is established and maintained by highly specific vesicular membrane transport in the biosynthetic, endocytic and transcytotic pathways. Two important concepts, the 'SNARE' and the 'raft' hypotheses, have been developed that together promise at least a partial understanding of the underlying general mechanisms that ensure the necessary specificity of these pathways.  相似文献   

16.
《The Journal of cell biology》1989,109(6):3259-3272
Electron microscopic approaches have been used to study the endocytic pathways from the apical and basolateral surface domains of the polarized epithelial cell, MDCK strain I, grown on polycarbonate filters. The cells were incubated at 37 degrees C in the presence of two distinguishable markers administered separately to the apical or the basolateral domain. Initially each marker was visualized within distinct apical or basolateral peripheral endosomes. However, after 15 min at 37 degrees C, both markers were observed within common perinuclear structures. The compartment in which meeting first occurred was shown to be a late endosome (prelysosome) that labeled extensively with antibodies against the cation-independent mannose-6-phosphate receptor (MPR) on cryosections. With increasing incubation times, markers passed from these MPR-positive structures into a common set of MPR-negative lysosomes that were mainly located in the apical half of the cell. A detailed quantitative analysis of the endocytic pathways was carried out using stereological techniques in conjunction with horseradish peroxidase and acid phosphatase cytochemistry. This enabled us to estimate the absolute volumes and membrane surface areas of the endocytic organelles involved in apical and basolateral endocytosis.  相似文献   

17.
Different classes of glycans are implicated as mediators of apical protein sorting in the secretory pathway of epithelial cells, but recent research indicates that sorting to the apical and basolateral surfaces may occur before completion of glycan synthesis. We have previously shown that a proteoglycan (PG) core protein can obtain different glycosaminoglycan (GAG) structures in the apical and basolateral secretory routes (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem. 280:29596-29603) of epithelial Madin-Darby canine kidney (MDCK) cells. We have now also determined the detailed N-glycan structures acquired by a single glycoprotein species in the same apical and basolateral secretory pathways. For this purpose, rat growth hormone (rGH) with two N-glycan sites (rGH-2N) inserted into the rGH portion (NAS and NFT) was fused to green fluorescent protein (GFP) and expressed in MDCK cells. Immunoisolated rGH variants were analyzed for site occupancy and N-glycan structure by mass spectrometry. The extent of NAS and NFT site occupancy was different, but comparable for rGH-2N secreted apically and basolaterally. Microheterogeneity existed for the glycans attached to each N-glycan site, but no major differences were observed in the apical and basolateral pathways. Transfer of the GAG modification domain from the PG serglycin to the fusion site of rGH-2N and GFP allowed polymerization of GAG chains onto the novel protein variant and influenced the microheterogeneity of the N-glycans toward more acidic glycans, but did not alter the relative site occupancy. In conclusion, no major differences were observed for N-glycan structures obtained by the expressed model proteins in the apical and basolateral secretory pathways of epithelial MDCK cells, but insertion of a GAG attachment domain shifted the N-glycans to more acidic structures.  相似文献   

18.
《The Journal of cell biology》1993,122(6):1223-1230
Trophoblast-like BeWo cells form well-polarized epithelial monolayers, when cultured on permeable supports. Contrary to other polarized cell systems, in which the transferrin receptor is found predominantly on the basolateral cell surface, BeWo cells express the transferrin receptor at both apical and basolateral cell surfaces (Cerneus, D.P., and A. van der Ende. 1991. J. Cell Biol. 114: 1149-1158). In the present study we have addressed the question whether BeWo cells use a different sorting mechanism to target transferrin receptors to the cell surface, by examining the biosynthetic and transcytotic pathways of the transferrin receptor in BeWo cells. Using trypsin and antibodies to detect transferrin receptors at the cell surface of filter-grown BeWo cells, we show that at least 80% of newly synthesized transferrin receptor follows a direct pathway to the basolateral surface, demonstrating that the transferrin receptor is efficiently intracellularly sorted. After surface arrival, pulse-labeled transferrin receptor equilibrates between apical and basolateral cell surfaces, due to ongoing transcytotic transport in both directions. The subsequent redistribution takes over 120 min and results in a steady state distribution with 1.5-2.0 times more transferrin receptors at the basolateral surface than at the apical surface. By monitoring the fate of surface-bound 125I-transferrin, internalized either from the apical or basolateral surface transcytosis of the transferrin receptor was studied. About 15% of 125I-transferrin is transcytosed in the basolateral to apical direction, whereas 25% is transcytosed in the opposite direction, indicated that the fraction of receptors involved in transcytosis is roughly twofold higher for the apical receptor pool, as compared to the basolateral pool. Upon internalization, both apical and basolateral receptor pools become redistributed on both surfaces, resulting in a twofold higher number of transferrin receptors at the basolateral surface. Our results indicate that in BeWo cells bidirectional transcytosis is the main factor in surface distribution of transferrin receptors on apical and basolateral surfaces, which may represent a cell type-specific, post-endocytic, sorting mechanism.  相似文献   

19.
《The Journal of cell biology》1990,111(6):2365-2373
A polarized cell, to maintain distinct basolateral and apical membrane domains, must tightly regulate vesicular traffic terminating at either membrane domain. In this study we have examined the extent to which microtubules regulate such traffic in polarized cells. Using the polymeric immunoglobulin receptor expressed in polarized MDCK cells, we have examined the effects of nocodazole, a microtubule-disrupting agent, on three pathways that deliver proteins to the apical surface and two pathways that deliver proteins to the basolateral surface. The biosynthetic and transcytotic pathways to the apical surface are dramatically altered by nocodazole in that a portion of the protein traffic on each of these two pathways is misdirected to the basolateral surface. The apical recycling pathway is slowed in the presence of nocodazole but targeting is not disrupted. In contrast, the biosynthetic and recycling pathways to the basolateral surface are less affected by nocodazole and therefore appear to be more resistant to microtubule disruption.  相似文献   

20.
Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号