首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.  相似文献   

2.
Stimulation of rat basophilic leukemia (RBL-2H3) cells with oligomeric IgE elicited a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1 on tyrosine residues. Prior incubation of RBL-2H3 cells with a protein tyrosine kinase inhibitor, herbimycin A, prevented the tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of phosphatidylinositol 4,5-bisphosphate induced by oligomeric IgE. However, 5'-(N-ethyl)carboxamidoadenosine, which is known to activate PLC through a G protein, did not elicit tyrosine phosphorylation of PLC-gamma 1. These results, together with previous findings showing that tyrosine phosphorylation of PLC-gamma 1 enhances its catalytic activity, indicate that phosphorylation of PLC-gamma 1 by a nonreceptor tyrosine kinase is the mechanism by which IgE receptor aggregation triggers PLC activation.  相似文献   

3.
Ligand-mediated perturbation of the T-cell antigen receptor (TCR) triggers a rapid increase in phosphoinositide-specific phospholipase C (PLC) activity in resting T-cells. Although the mechanism by which TCR ligation regulates PLC activity is unknown, recent studies suggest that coupling of this receptor complex to PLC activity is dependent on an intermediate protein tyrosine phosphorylation event(s). In the present study, we demonstrate that antibody-mediated TCR cross-linkage results in the tyrosine phosphorylation of PLC-gamma 1. Stimulation of the TCR for 30 s induced a 4-5-fold increase in the level of PLC activity recovered in anti-phosphotyrosine (Tyr(P)) antibody immunoprecipitates from stimulated Jurkat cells. The appearance of PLC activity in the immunoprecipitates preceded the onset of phosphoinositide hydrolysis in vivo, which began 30-60 s after TCR ligation. Furthermore, the TCR-mediated increase in anti-Tyr(P) antibody-bound PLC activity was inhibited by staurosporine at drug concentrations identical with those required for in vivo inhibition of TCR-dependent phosphoinositide breakdown. Immunoblot analyses demonstrated that TCR ligation dramatically increased the level of tyrosine-phosphorylated PLC-gamma 1 present in anti-Tyr(P) antibody immunoprecipitates from stimulated Jurkat cells. These results strongly suggest that the TCR complex expressed by Jurkat cells is functionally coupled to the phosphoinositide-dependent signaling pathway through the tyrosine phosphorylation of PLC-gamma 1.  相似文献   

4.
5.
Lee YH  Bae SS  Seo JK  Choi I  Ryu SH  Suh PG 《Molecules and cells》2000,10(4):469-474
Phospholipase C (PLC)-gamma1 plays a pivotal role in the signal transduction pathway mediated by growth factors. In this study, we found that neurite outgrowth of pheochromocytoma (PC12) cells was significantly induced by interleukin-6 (IL-6). Stimulation of PC12 cells with IL-6 led to tyrosine phosphorylation of PLC-gamma1 in a dose- and time-dependent manner. IL-6 stimulation also increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Accumulation of total inositol phosphate as well as tyrosine phosphorylation of PLC-gamma1 was inhibited by the pretreatment of protein kinase inhibitors such as genistein and staurosporine. These results suggest that PLC-gamma1 may be involved in the signal transduction pathway of IL-6-induced PC12 cell differentiation.  相似文献   

6.
The persistence of covalently closed circular (ccc) DNA of Hepatitis B virus (HBV) in liver cells is believed to be the major reason for relapse after completion of HBV antiviral therapy. Up to now, there is no sensitive method to quantify cccDNA in infected liver cells. We designed a set of primers to specifically amplify DNA fragments from HBV cccDNA but not from viral genomic DNA. A good linear range was obtained when 100-10(7) copies of HBV cccDNA were used as template in the quantitative real-time PCR. Not only is this method rapid, economical, highly sensitive, it can be used to monitor HBV cccDNA in infected human liver biopsies and to guide patients undergoing long-term anti-HBV therapy.  相似文献   

7.
The relationship between tyrosine phosphorylation and activation of phospholipase D1 (PLD1) by v-Src was examined. Co-expression of v-Src and PLD1 in COS-7 cells resulted in increased activity and marked tyrosine phosphorylation of PLD1. PLD activity was increased in membranes or immunoprecipitates prepared from these cells. Dephosphorylation of the immunoprecipitated enzyme by tyrosine phosphatase or phosphorylation by c-Src produced no changes in its activity. Tyrosine phosphorylation induced by v-Src caused a shift of the enzyme from the Triton-soluble to the Triton-insoluble fraction. v-Src and PLD1 could be co-immunoprecipitated from cells co-expressing these and were co-localized in the perinuclear region as assessed by immunofluorescence. Mutation of the palmitoylation sites of PLD1 significantly reduced tyrosine phosphorylation by v-Src. It is concluded that tyrosine phosphorylation of PLD1 by v-Src does not per se alter its activity. It is proposed that activation of PLD1 by v-Src in vivo may involve association/colocalization of the two proteins.  相似文献   

8.
Jang IH  Kim JH  Lee BD  Bae SS  Park MH  Suh PG  Ryu SH 《FEBS letters》2001,491(1-2):4-8
Upon epidermal growth factor treatment, phospholipase C-gamma1 (PLC-gamma1) translocates from cytosol to membrane where it is phosphorylated at tyrosine residues. Caveolae are small plasma membrane invaginations whose structural protein is caveolin. In this study, we show that the translocation of PLC-gamma1 and its tyrosine phosphorylation are localized in caveolae by caveolin-enriched low-density membrane (CM) preparation and immunostaining of cells. Pretreatment of cells with methyl-beta-cyclodextrin (MbetaCD), a chemical disrupting caveolae structure, inhibits the translocation of PLC-gamma1 to CM as well as phosphatidylinositol (PtdIns) turnover. However, MbetaCD shows no effect on tyrosine phosphorylation level of PLC-gamma1. Our findings suggest that, for proper signaling, PLC-gamma1 phosphorylation has to occur at PtdInsP(2)-enriched sites.  相似文献   

9.
10.
When membrane Ig (mIg) on the surface of B lymphocytes is cross-linked using anti-Ig antibodies, the enzyme phospholipase C (PLC) is activated to cleave inositol phospholipids. Tyrosine kinase inhibitors have been reported to inhibit this event. Therefore, we investigated the effect of cross-linking of mIg on the state of tyrosine phosphorylation of PLC activity in two murine B cell lines and in normal resting mouse B cells. Proteins from lysates of stimulated or unstimulated cells were immunoprecipitated with an antiphosphotyrosine antibody and subsequently assayed for PLC activity. Treatment of the B cell line WEHI-231 with anti-IgM led within 15 to 30 s to a 10- to 20-fold increase in tyrosine-phosphorylated PLC activity. Inositol trisphosphate generation by WEHI-231 cells stimulated under the same conditions demonstrated similar kinetics. Normal resting B cells treated with anti-IgM or anti-IgD demonstrated 2.5- and 4-fold increases, respectively, of tyrosine-phosphorylated PLC activity. To identify the isozyme of PLC that was phosphorylated, we immunoprecipitated PLC-gamma 1 or PLC-gamma 2 with specific antibodies and assessed the amount of tyrosine phosphorylation of these proteins by antiphosphotyrosine immunoblotting. Treatment of WEHI-231 or Bal17 cells with anti-IgM induced an increase in PLC-gamma 2 tyrosine phosphorylation over background levels. There was no detectable tyrosine phosphorylation of PLC-gamma 1 in treated or untreated WEHI-231 cells, whereas anti-IgM-treated Bal17 cells did exhibit low but detectable levels of tyrosine phosphorylation of PLC-gamma 1. In normal resting mouse B cells, there was no detectable PLC-gamma 1, but PLC-gamma 2 was abundant. These observations suggest that PLC-gamma 2 is a significant substrate for the mIg-activated protein tyrosine kinase and may be responsible for mediating mIg stimulation of inositol phospholipid hydrolysis in murine B cells.  相似文献   

11.
12.
IL-7 is a glycoprotein involved in the regulation of lymphocyte precursor growth. In addition, it has a comitogenic effect on mature T cells but not on mature B cells. The exact mechanism whereby IL-7R mediates these cell growth properties remains unknown. Because many growth factor receptor systems on various cell types transduce signals by activating a tyrosine kinase, we have studied here the effect of IL-7R ligation on protein tyrosine phosphorylation. We found that human rIL-7 consistently induced tyrosine phosphorylation of five major proteins, of 175, 155, 135, 110, and 85 kDa, and five minor proteins. The effect of human rIL-7 on tyrosine phosphorylation of these substrates was concentration and time dependent. One of the known substrates that is phosphorylated on tyrosine residues after binding of growth factors to their receptors is the phosphoinositide-specific phospholipase C. Several phospholipase C isozymes have been recently recognized; one isozyme, phospholipase C-gamma 1, was demonstrated to be phosphorylated rapidly after ligand binding to the platelet-derived growth factor receptor and the T cell Ag receptor. We show here that, in contrast to Ag receptor ligation, activation of IL-7R does not induce tyrosine phosphorylation on phospholipase C-gamma 1. Consistent with these results, human rIL-7 failed to increase phosphatidylinositol turnover and did not induce a rise in cytosolic free Ca2+ in the thymocytes, mature T cells, or pre-pre-B cells. The results indicate that the IL-7R mediates the activation of the tyrosine phosphorylation pathway but does not induce the phosphatidylinositol-phospholipase C pathway.  相似文献   

13.
14.
Although Rafs play a central role in signal transduction, the mechanism(s) by which they become activated is poorly understood. Raf-1 activation is dependent on the protein's ability to bind Ras, but Ras binding is insufficient to activate Raf-1 tyrosine phosphorylation to this Ras-induced activation, in the absence of an over-expressed tyrosine kinase. We demonstrate that Raf-1 purified form Sf9 cells coinfected with baculovirus Ras but not Src could be inactivated by protein tyrosine phosphatase PTP-1B. 14-3-3 and Hsp90 proteins blocked both the tyrosine dephosphorylation and inactivation of Raf-1, suggesting that Raf-1 activity is phosphotyrosine dependent. In Ras-transformed NIH 3T3 cells, a minority of Raf-1 protein was membrane associated, but essentially all Raf-1 activity and Raf-1 phosphotyrosine fractionated with plasma membranes. Thus, the tyrosine-phosphorylated and active pool of Raf-1 constitute a membrane-localized subfraction which could also be inactivated with PTP-1B. By contrast, B-Raf has aspartic acid residues at positions homologous to those of the phosphorylated tyrosines (at 340 and 341) of Raf-1 and displays a high basal level of activity. B-Raf was not detectably tyrosine phosphorylated, membrane localized, or further activated upon Ras transformation, even though B-Raf has been shown to bind to Ras in vitro. We conclude that tyrosine phosphorylation is an essential component of the mechanism by which Ras activates Raf-1 kinase activity and that steady-state activated Ras is insufficient to activate B-Raf in vivo.  相似文献   

15.
16.
In this study we demonstrate that: (1) although the major phospholipase A2 present in sheep platelets is activated by calcium ions, it can effectively catalyze hydrolysis of the sn-2 ester linkage in phospholipids in the absence of calcium; (2) expression of calcium-independent phospholipase A2 activity can be induced by NaCl utilizing purified (but not crude) cytosolic enzyme; and (3) calcium-independent phospholipase A2 activity is regulated by a reconstitutable cytosolic protein. Collectively, these results underscore the fundamental catalytic differences between extracellular and intracellular calcium-dependent phospholipases A2 and demonstrate that calcium is sufficient, but not necessary, for the activation of this class of intracellular phospholipases A2.  相似文献   

17.
Phospholipase C-gamma1 displayed sigmoidal kinetics with a S(0.5) value of 0.17 mole fraction PIP(2) when assayed at pH 6.8 using detergent:lipid mixed micelles. The pH optimum for hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C-gamma1 was dependent on the mole fraction of substrate in the micelle. The pH optimum was 5.5 when the enzyme was assayed below the S(0.5). The pH optima shifted to a pH range of 6.0-6.3 when the enzyme was assayed above the S(0.5). The kinetic parameters for phospholipase C-gamma1 assayed at various pH values from pH 7.0 to 5.0 yielded similar n values (n=4), but the constant, K', decreased from 1x10(-2) (mole fraction)(2) at pH 7.0 to 1x10(-5) (mole fraction)(2) at pH 5.0. Maximum enzyme specificity occurred at pH values below pH 6.0 as determined by the plot of logk(cat)/S(0.5) versus pH. Intrinsic fluorescence spectroscopy revealed that at a pH value above 7.0 or below 6.3, tryptophan quenching occurred. Fluorescence quenching experiments performed with acrylamide determined phospholipase C-gamma1 incubated at pH 5.0 had a larger collisional quenching constant than enzyme incubated at pH 7.0. Lowering the pH to 5.0 apparently resulted in interior tryptophans becoming more solvent accessible. These data suggest that pH may activate phospholipase C-gamma1 by disrupting ionizable groups leading to a conformational change.  相似文献   

18.
Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation.  相似文献   

19.
Cross-linking the antigen receptor on B cells results in a rapid increase in protein tyrosine kinase activity as detected by increased phosphorylation on tyrosine residues of multiple proteins. Although the identity of most of this substrates remains unknown, some have been proposed. One possible substrate of the antigen receptor-associated kinase is phospholipase C (PLC). Since multiple isoforms of PLC have been identified, we have studied which isoforms are targets of the antigen receptor. PLC-gamma 1 and PLC-gamma 2 but not PLC-beta 1 or PLC-delta 1 were detected in human B cells. Immunoprecipitation with antibodies against PLC-gamma 1 or PLC-gamma 2 and subsequent Western blotting with anti-phosphotyrosine antibodies revealed that both PLC-gamma 1 and PLC-gamma 2 are tyrosine phosphorylated in stimulated but not in resting B cells. This was confirmed by experiments whereby B cell lysates were immunoprecipitated with anti-phosphotyrosine antibody and subsequently blotted with antibodies against PLC-gamma 1 or PLC-gamma 2. Further, the specific protein tyrosine kinase inhibitors, tyrphostins, which block phospholipase-C activation and proliferation of B cells also inhibited tyrosine phosphorylation on both PLC-gamma 1 and PLC-gamma 2. We conclude that both isoforms PLC-gamma 1 and PLC-gamma 2 are targets of the antigen receptor-associated protein tyrosine kinase.  相似文献   

20.
Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号