首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two S49 mouse lymphoma cell variants hemizygous for expression of mutant regulatory (R) subunits of type I cyclic AMP-dependent protein kinase were used to investigate functional consequences of lesions in the putative cAMP-binding sites of R subunit. Kinase activation properties of wild-type and mutant enzymes were compared using cAMP and six site-selective analogs of cAMP. Kinases from both mutant sublines were relatively resistant to cyclic nucleotide-dependent activation, but they were fully activable by at least some effectors. Relative resistances of the mutant kinases varied from about 5-fold for analogs selective for their nonmutated sites to as much as 700-fold for analogs selective for their mutated sites; resistance to cAMP was intermediate. Apparent affinities of wild-type and mutant R subunits for [3H]cAMP were not appreciably different, but competition experiments with site-selective analogs of cAMP suggested that binding of cAMP to mutant R subunits was primarily to their nonmutated sites. Analyses of cooperativity in cyclic nucleotide-dependent activation of mutant kinases, synergism between site I- and site II-selective analogs in activating the mutant enzymes, and dissociation of bound cAMP from mutant R subunits provided additional evidence that the mutations in these strains selectively inactivated single classes of cAMP-binding sites: phenomena attributable in wild-type enzyme to intrachain interactions between sites I and II were always absent or severely diminished in experiments with the mutant enzymes. These results confirm that R subunit sequences implicated in cAMP binding by homology with other cyclic nucleotide-binding proteins actually correspond to functional cAMP-binding sites. Furthermore, occupation of either cAMP-binding site I or II is apparently sufficient for activation of cAMP-dependent protein kinase. The presence of four functional cAMP-binding sites in wild-type kinase enhances the cooperativity and sensitivity of cAMP-mediated activation.  相似文献   

2.
Random chemical mutagenesis, in vitro, of the 5' portion of the Escherichia coli trpA gene has yielded 66 mutant alpha subunits containing single amino acid substitutions at 49 different residue sites within the first 121 residues of the protein; this portion of the alpha subunit contains four of the eight alpha helices and three of the eight beta strands in the protein. Sixty-two of the subunits were examined for their heat stabilities by sensitivity to enzymatic inactivation (52 degrees C for 20 min) in crude extracts and by differential scanning calorimetry (DSC) with 29 purified proteins. The enzymatic activities of mutant alpha subunits that contained amino acid substitutions within the alpha and beta secondary structures were more heat labile than the wild-type alpha subunit. Alterations only in three regions, at or immediately C-terminal to the first three beta strands, were stability neutral or stability enhancing with respect to enzymatic inactivation. Enzymatic thermal inactivation appears to be correlated with the relative accessibility of the substituted residues; stability-neutral mutations are found at accessible residual sites, stability-enhancing mutations at buried sites. DSC analyses showed a similar pattern of stabilization/destabilization as indicated by inactivation studies. Tm differences from the wild-type alpha subunit varied +/- 7.6 degrees C. Eighteen mutant proteins containing alterations in helical and sheet structures had Tm's significantly lower (-1.6 to -7.5 degrees C) than the wild-type Tm (59.5 degrees C). In contrast, 6 mutant alpha subunits with alterations in the regions following beta strands 1 and 3 had increased Tm's (+1.4 to +7.6 degrees C). Because of incomplete thermal reversibilities for many of the mutant alpha subunits, most likely due to identifiable aggregated forms in the unfolded state, reliable differences in thermodynamic stability parameters are not possible. The availability of this group of mutant alpha subunits which clearly contain structural alterations should prove useful in defining the roles of certain residues or sequences in the unfolding/folding pathway for this protein when examined by urea/guaninidine denaturation kinetic analysis.  相似文献   

3.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

4.
During biosynthesis of chlorophyll, Mg(2+) is inserted into protoporphyrin IX by magnesium chelatase. This enzyme consists of three different subunits of approximately 40, 70 and 140 kDa. Seven barley mutants deficient in the 40 kDa magnesium chelatase subunit were analysed and it was found that this subunit is essential for the maintenance of the 70 kDa subunit, but not the 140 kDa subunit. The 40 kDa subunit has been shown to belong to the family of proteins called "ATPases associated with various cellular activities", known to form ring-shaped oligomeric complexes working as molecular chaperones. Three of the seven barley mutants are semidominant mis-sense mutations leading to changes of conserved amino acid residues in the 40 kDa protein. Using the Rhodobacter capsulatus 40 and 70 kDa magnesium chelatase subunits we have analysed the effect of these mutations. Although having no ATPase activity, the deficient 40 kDa subunit could still associate with the 70 kDa protein. The binding was dependent on Mg(2+) and ATP or ADP. Our study demonstrates that the 40 kDa subunit functions as a chaperon that is essential for the survival of the 70 kDa subunit in vivo. We conclude that the ATPase activity of the 40 kDa subunit is essential for this function and that binding between the two subunits is not sufficient to maintain the 70 kDa subunit in the cell. The ATPase deficient 40 kDa proteins fail to participate in chelation in a step after the association of the 40 and 70 kDa subunits. This step presumably involves a conformational change of the complex in response to ATP hydrolysis.  相似文献   

5.
AAA proteins share a conserved active site for ATP hydrolysis and regulate many cellular processes. AAA proteins are oligomeric and often have multiple ATPase domains per monomer, which is suggestive of complex allosteric kinetics of ATP hydrolysis. Here, using wild-type Hsp104 in the hexameric state, we demonstrate that its two AAA modules (NBD1 and NBD2) have very different catalytic activities, but each displays cooperative kinetics of hydrolysis. Using mutations in the AAA sensor-1 motif of NBD1 and NBD2 that reduce the rate of ATP hydrolysis without affecting nucleotide binding, we also examine the consequences of keeping each site in the ATP-bound state. In vitro, reducing k(cat) at NBD2 significantly alters the steady-state kinetic behavior of NBD1. Thus, Hsp104 exhibits allosteric communication between the two sites in addition to homotypic cooperativity at both NBD1 and NBD2. In vivo, each sensor-1 mutation causes a loss-of-function phenotype in two assays of Hsp104 function (thermotolerance and yeast prion propagation), demonstrating the importance of ATP hydrolysis as distinct from ATP binding at each site for Hsp104 function.  相似文献   

6.
ClpX mediates ATP-dependent denaturation of specific target proteins and disassembly of protein complexes. Like other AAA + family members, ClpX contains an alphabeta ATPase domain and an alpha-helical C-terminal domain. ClpX proteins with mutations in the C-terminal domain were constructed and screened for disassembly activity in vivo. Seven mutant enzymes with defective phenotypes were purified and characterized. Three of these proteins (L381K, D382K and Y385A) had low activity in disassembly or unfolding assays in vitro. In contrast to wild-type ClpX, substrate binding to these mutants inhibited ATP hydrolysis instead of increasing it. These mutants appear to be defective in a reaction step that engages bound substrate proteins and is required both for enhancement of ATP hydrolysis and for unfolding/disassembly. Some of these side chains form part of the interface between the C-terminal domain of one ClpX subunit and the ATPase domain of an adjacent subunit in the hexamer and appear to be required for communication between adjacent nucleotide binding sites.  相似文献   

7.
Spastin is a hexameric ring AAA ATPase that severs microtubules. To see whether the ring complex funnels the energy of multiple ATP hydrolysis events to the site of mechanical action, we investigate here the cooperativity of spastin. Several lines of evidence indicate that interactions among two subunits dominate the cooperative behavior: (i) the ATPase activity shows a sigmoidal dependence on the ATP concentration; (ii) ATPγS displays a mixed-inhibition behavior for normal ATP turnover; and (iii) inactive mutant subunits inhibit the activity of spastin in a hyperbolic dependence, characteristic for two interacting species. A quantitative model based on neighbor interactions fits mutant titration experiments well, suggesting that each subunit is mainly influenced by one of its neighbors. These observations are relevant for patients suffering from SPG4-type hereditary spastic paraplegia and explain why single amino acid exchanges lead to a dominant negative phenotype. In severing assays, wild type spastin is even more sensitive toward the presence of inactive mutants than in enzymatic assays, suggesting a weak coupling of ATPase and severing activity.  相似文献   

8.
The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 μM and 20 μM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.  相似文献   

9.
The bacterial AAA+ protein ClpB and its eukaryotic homologue Hsp104 ensure thermotolerance of their respective organisms by reactivating aggregated proteins in cooperation with the Hsp70/Hsp40 chaperone system. Like many members of the AAA+ superfamily, the ClpB protomers form ringlike homohexameric complexes. The mechanical energy necessary to disentangle protein aggregates is provided by ATP hydrolysis at the two nucleotide-binding domains of each monomer. Previous studies on ClpB and Hsp104 show a complex interplay of domains and subunits resulting in homotypic and heterotypic cooperativity. Using mutations in the Walker A and Walker B nucleotide-binding motifs in combination with mixing experiments we investigated the degree of inter-subunit coupling with respect to different aspects of the ClpB working cycle. We find that subunits are tightly coupled with regard to ATPase and chaperone activity, but no coupling can be observed for ADP binding. Comparison of the data with statistical calculations suggests that for double Walker mutants, approximately two in six subunits are sufficient to abolish chaperone and ATPase activity completely. In further experiments, we determined the dynamics of subunit reshuffling. Our results show that ClpB forms a very dynamic complex, reshuffling subunits on a timescale comparable to steady-state ATP hydrolysis. We propose that this could be a protection mechanism to prevent very stable aggregates from becoming suicide inhibitors for ClpB.  相似文献   

10.
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.  相似文献   

11.
Acetolactate synthase small subunit encoding ilvN genes from the parental Streptomyces cinnamonensis strain and mutants resistant either to valine analogues or to 2-ketobutyrate were cloned and sequenced. The wild-type IlvN from S. cinnamonensis is composed of 175 amino acid residues and shows a high degree of similarity with the small subunits of other valine-sensitive bacterial acetolactate synthases. Changes in the sequence of ilvN conferring the insensitivity to valine in mutant strains were found in two distinct regions. Certain point mutations were located in the conserved domain near the N terminus, while others resulting in the same phenotype shortened the protein at V(104) or V(107). To confirm whether the described mutations were responsible for the changed biochemical properties of the native enzyme, the wild-type large subunit and the wild-type and mutant forms of the small one were expressed separately in E. coli and combined in vitro to reconstitute the active enzyme.  相似文献   

12.
Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy, and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native I(K1) in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K(+) current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome.  相似文献   

13.
In the phiX174 procapsid crystal structure, 240 external scaffolding protein D subunits form 60 pairs of asymmetric dimers, D(1)D(2) and D(3)D(4), in a non-quasi-equivalent structure. To achieve this arrangement, alpha-helix 3 assumes two different conformations: (i) kinked 30 degrees at glycine residue 61 in subunits D(1) and D(3) and (ii) straight in subunits D(2) and D(4). Substitutions for G61 may inhibit viral assembly by preventing the protein from achieving its fully kinked conformation while still allowing it to interact with other scaffolding and structural proteins. Mutations designed to inhibit conformational switching in alpha-helix 3 were introduced into a cloned gene, and expression was demonstrated to inhibit wild-type morphogenesis. The severity of inhibition appears to be related to the size of the substituted amino acid. For infections in which only the mutant protein is present, morphogenesis does not proceed past the first step that requires the wild-type external scaffolding protein. Thus, mutant subunits alone appear to have little or no morphogenetic function. In contrast, assembly in the presence of wild-type and mutant subunits is blocked prematurely, before D protein is required in a wild-type infection, or channeled into an off-pathway reaction. These data suggest that the wild-type protein transports the inhibitory protein to the pathway. Viruses resistant to the lethal dominant proteins were isolated, and mutations were mapped to the coat and internal scaffolding proteins. The affected amino acids cluster in the atomic structure and may act to exclude mutant subunits from occupying particular positions atop pentamers of the viral coat protein.  相似文献   

14.
Mitochondrial complex I exists as a mixture of two inter-convertible forms: active (A) and de-activated (D), the latter being sensitive to SH-modifying compounds. To investigate if the conserved cysteine-rich 11.5 kDa subunit of Neurospora crassa complex I is involved in this process, we subjected the corresponding genomic DNA to site-directed mutagenesis. The four cysteine residues of the subunit were separately substituted with serine residues and the resulting proteins were independently expressed in a null-mutant strain. All of the obtained mutant strains were able to assemble a complex I with similar kinetic properties to those observed in the wild-type enzyme, indicating that none of the cysteine residues of the 11.5 kDa protein is individually relevant for the A/D transition process. Diminished amounts of assembled complex I seem to be the major effect of these specific mutations. The cysteine residues are likely important to the acquisition and stabilization of the correct 11.5 kDa protein conformation and this is reflected in the assembly/stability of complex I.  相似文献   

15.
In vitro subunit hybridization was used to explore the basis of putative allosteric behaviour in clostridial glutamate dehydrogenase. C320S and D165S mutant enzymes were chosen to construct the hybrid proteins. The C320S mutant protein is fully active and shows normal allosteric properties but lacks the reactive cysteine. D165S is capable of binding both glutamate and NAD(+) but is catalytically inactive. The mutant proteins were denatured separately in 4 M urea, mixed in a 5 : 1 (D165S/C320S) ratio and diluted into a refolding mixture composed of 2 mM NAD(+), 1 M fluoride and artificial chaperones (4 mM polyoxyethylene 10 lauryl ether and 1.6 mM beta-cyclodextrin). Under these conditions approximately 50% refolding was achieved for both mutant proteins separately. The renatured mixture was concentrated and separated from denatured proteins and the components of the refolding mixture by ultrafiltration and ion-exchange chromatography. Ellman's reagent, 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), which binds close to the NAD(+) binding site, thus abolishing coenzyme binding in the wild-type enzyme, also reacts with D165S but has no effect on C320S. Modification by DTNB was coupled with dye-ligand affinity chromatography on a Procion Red HE-3B column in order to separate the hybrid mixture into fractions of defined composition. An optimized procedure based on salt gradient elution was developed. DTNB-modified 5 : 1 hybrids, with only one subunit capable of binding coenzyme, showed classical Michaelis-Menten kinetics when the NAD(+) concentration was varied, whereas removal of the thionitrobenzoate moieties that blocked the other five coenzyme binding sites in the hexamer reinstated nonlinear behaviour, suggesting that 'nonlinear' behaviour of the native enzyme and the hybrid with six coenzyme binding sites depends on binding to multiple sites. When assayed at high pH with increasing glutamate concentration, the sample with only one active subunit showed reduced sigmoidicity in the dependence of reaction rate on glutamate concentration (h = 3.0) compared with native C320S with six active subunits (h = 5.2) suggesting that the interaction between the subunits was reduced but not abolished completely. Catalytically silent subunits can thus still contribute to cooperativity.  相似文献   

16.
The essential prokaryotic cell division protein FtsZ is a tubulin homologue that forms a ring at the division site. FtsZ forms polymers in a GTP-dependent manner. Recent biochemical evidence has shown that FtsZ forms multimeric structures in vitro and in vivo and functions as a self-activating GTPase. Structural analysis of FtsZ points to an important role for the highly conserved tubulin-like loop 7 (T7-loop) in the self-activation of GTP hydrolysis. The T7-loop was postulated to form the active site together with the nucleotide-binding site on an adjacent FtsZ monomer. To characterize the role of the T7-loop of Escherichia coli FtsZ, we have mutagenized residues M206, N207, D209, D212, and R214. All the mutant proteins, except the R214 mutant, are severely affected in polymerization and GTP hydrolysis. Charged residues D209 and D212 cannot be substituted with a glutamate residue. All mutants interact with wild-type FtsZ in vitro, indicating that the T7-loop mutations do not abolish FtsZ self-association. Strikingly, in mixtures of wild-type and mutant proteins, most mutants are capable of inhibiting wild-type GTP hydrolysis. We conclude that the T7-loop is part of the active site for GTP hydrolysis, formed by the association of two FtsZ monomers.  相似文献   

17.
Structural lesions in cAMP-binding sites of regulatory (R) subunit of cAMP-dependent protein kinase caused identical increases in apparent constants for cyclic nucleotide-dependent kinase activation in preparations from cells that were hemizygous or heterozygous for mutant R1 subunit expression. No wild-type kinase activation was observed in extracts from heterozygous mutant cells. This "dominance" was investigated by characterizing expression of wild-type and mutant R1 subunits and properties of protein kinase from S49 mouse lymphoma cell mutants heterozygous for expression of wild-type R1 subunits and R1 subunits with a lesion (Glu200) that inactivates cAMP-binding site A. By both studies of cAMP dissociation and two-dimensional gel analysis, wild-type R subunits comprised about 35% of total R1 subunits in heterozygous mutants. Synthesis of wild-type and mutant R1 subunits was equivalent, but wild-type subunits were degraded preferentially. Hydroxylapatite chromatography revealed a novel R1 subunit-containing species from heterozygous mutant preparations whose elution behavior suggested a trimeric kinase consisting of an R1 subunit dimer and one catalytic (C) subunit. Wild-type R1 subunit was found only in dimer and "trimer" peaks; the tetrameric kinase peak contained only mutant R1 subunit. It is concluded that C subunit binds preferentially to mutant R1 subunit in heterozygous cells forming either tetrameric kinase with mutant R1 subunit homodimers or trimeric kinase with R1 subunit heterodimers. This preferential binding results both in suppression of wild-type kinase activation and differential stabilization of mutant R1 subunits.  相似文献   

18.
α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.  相似文献   

19.
Spastin, a member of the ATPases associated with various cellular activities (AAA) family of proteins, is the most frequently mutated in hereditary spastic paraplegia. The defining feature of the AAA proteins is a structurally conserved AAA domain which assembles into an oligomer. By chemical cross-linking and gel filtration chromatography, we show that spastin oligomerizes into a hexamer. Furthermore, to gain a comprehensive overview of the oligomeric structure of spastin, we generated a structural model of the AAA domain of spastin using template structure of VPS4B and p97/VCP. The generated model of spastin provided us with a framework to classify the identified missense mutations in the AAA domain from hereditary spastic paraplegia patients into different structural/functional groups. Finally, through co-localization studies in mammalian cells, we show that E442Q mutant spastin acts in a dominant negative fashion and causes redistribution of both wild-type spastin monomer and spastin interacting protein, RTN1 into filamentous microtubule bundles.  相似文献   

20.
A previously described system for biological selection of randomly mutagenized ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) employing the phototrophic bacterium Rhodobacter capsulatus was used to select a catalytically altered form of a cyanobacterial (Synechococcus sp. strain PCC6301) enzyme. This mutant Rubisco, in which conserved glycine 176 was replaced with an aspartate residue, was not able to support CO(2)-dependent growth of the host strain. Site-directed mutant proteins were also constructed, e.g. asparagine and alanine residues replaced the native glycine with the result that these mutant proteins either greatly reduced the ability of R. capsulatus to support growth or had little effect, respectively. Growth phenotypes were consistent with the Rubisco activity levels associated with these proteins, and this was also borne out with purified recombinant proteins. Despite being catalytically challenged, the G176D and G176N mutant proteins were found to exhibit a more favorable interaction with CO(2) than the wild type protein but exhibited a reduced affinity for the substrate ribulose 1,5-bisphosphate. The G176A enzyme differed little from the wild type protein in these properties. None of the mutants had CO(2)/O(2) specificities that differed markedly from the wild type. Further studies taken from the known structure of the Synechococcus Rubisco indicated that substitutions at Gly-176 affected associations between large subunits. Supporting experimental data included an unusual protein concentration-dependent effect on in vitro activity, differences in thermal stability relative to the wild type protein, and aberrant migration on nondenaturing polyacrylamide gels. From these results, it is apparent that residues not directly located within the active site but near large subunit interfaces can affect key kinetic properties of Rubisco. These results suggest that further bioselection protocols (using these proteins as starting material) might yield novel mutant forms of Rubisco that relate to key functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号