首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

2.
The transmembrane protein CD83 has been initially described as a maturation marker for dendritic cells. Moreover, there is increasing evidence that CD83 also regulates B cell function, thymic T cell maturation, and peripheral T cell activation. Herein, we show that CD83 expression confers immunosuppressive function to CD4(+) T cells. CD83 mRNA is differentially expressed in naturally occurring CD4(+)CD25(+) regulatory T cells, and upon activation these cells rapidly express large amounts of surface CD83. Transduction of naive CD4(+)CD25(-) T cells with CD83 encoding retroviruses induces a regulatory phenotype in vitro, which is accompanied by the induction of Foxp3. Functional analysis of CD83-transduced T cells in vivo demonstrates that these CD83(+)Foxp3(+) T cells are able to interfere with the effector phase of severe contact hypersensitivity reaction of the skin. Moreover, adoptive transfer of these cells prevents the paralysis associated with experimental autoimmune encephalomyelitis, suppresses proinflammatory cytokines IFN-gamma and IL-17, and increases antiinflammatory IL-10 in recipient mice. Taken together, our data provide the first evidence that CD83 expression can contribute to the immunosuppressive function of CD4(+) T cells in vivo.  相似文献   

3.
The prerequisites of peripheral activation of self-specific CD4(+) T cells that determine the development of autoimmunity are incompletely understood. SJL mice immunized with myelin proteolipid protein (PLP) 139-151 developed experimental autoimmune encephalomyelitis (EAE) when pertussis toxin (PT) was injected at the time of immunization but not when injected 6 days later, indicating that PT-induced alterations of the peripheral immune response lead to the development of autoimmunity. Further analysis using IA(s)/PLP(139-151) tetramers revealed that PT did not change effector T cell activation or regulatory T cell numbers but enhanced IFN-gamma production by self-specific CD4(+) T cells. In addition, PT promoted the generation of CD4(+)CD62L(low) effector T cells in vivo. Upon adoptive transfer, these cells were more potent than CD4(+)CD62L(high) cells in inducing autoimmunity in recipient mice. The generation of this population was paralleled by higher expression of the costimulatory molecules CD80, CD86, and B7-DC, but not B7-RP, PD-1, and B7-H1 on CD11c(+)CD4(+) dendritic cells whereas CD11c(+)CD8alpha(+) dendritic cells were not altered. Collectively, these data demonstrate the induction of autoimmunity by specific in vivo expansion of CD4(+)CD62L(low) cells and indicate that CD4(+)CD62L(low) effector T cells and CD11c(+)CD4(+) dendritic cells may be attractive targets for immune interventions to treat autoimmune diseases.  相似文献   

4.
CD7 and CD28 are T cell Ig superfamily molecules that share common signaling mechanisms. To determine roles CD7 and CD28 might play in peripheral lymphocyte development and function, we have generated CD7/CD28-double-deficient mice. CD7- and CD28-single-deficient and CD7/CD28-double-deficient mice had normal levels of CD4 and CD8-single-positive T cells in thymus and spleen. However, CD28-deficient mice had decreased CD4+CD25+ T cells in spleen compared with wild-type mice, and CD7/CD28-double-deficient mice had decreased numbers of CD4+CD25+ T cells in both thymus and spleen compared with both wild-type and CD28-deficient mice. Functional studies demonstrated that CD4+CD25+ T cells from CD28-deficient and CD7/CD28-double-deficient mice could mediate suppression of CD3 mAb activation of CD4+CD25- wild-type T cells, but were less potent than wild-type CD4+CD25+ T regulatory cells. Thyroiditis developed in aged CD7/CD28-double-deficient mice (>1 year) that was not seen in age-matched control mice or single CD7- or CD28-deficient mice, thus suggesting in vivo loss of T regulatory cells allowed for the development of spontaneous thyroiditis. Taken together, these data demonstrated collaborative roles for both CD7 and CD28 in determination of number and function of CD4+CD25+ T regulatory cells in the thymus and peripheral immune sites and in the development of spontaneous thyroiditis.  相似文献   

5.
IFN-alpha is a well-known agent for treatment of viral and malignant diseases. It has several modes of actions, including direct influence on the immune system. We investigated IFN-alpha effects on PBMC in terms of dendritic cell (DC) differentiation, as PBMC are exposed to high IFN-alpha levels during treatment of infections and cancers. We show that in vitro IFN-alpha exposure induced rapid and strong up-regulation of the DC-maturation markers CD80, CD86, and CD83 in bulk PBMC. Consistently, IFN-alpha induced up-regulation of these molecules on purified monocytes within 24 h. Up-regulation of CD80 and CD83 expression was IFN-alpha concentration-dependent. In contrast to GM-CSF + IL-4-generated DCs, most of the IFN-alpha-challenged CD83(+) cells coexpressed the monocyte marker CD14. Despite a typical mature DC immunophenotype, IFN-alpha-treated monocytes conserved phagocytic activity and never acquired a dendritic morphology. In mixed lymphocyte reactions IFN-alpha-treated monocytes were less potent than GM-CSF + IL-4-generated DCs but significantly more potent than untreated monocytes to induce T cell proliferation in bulk PBMC. However, only GM-CSF + IL-4-generated DCs were able to induce a significant proliferation of naive CD4(+) T cells. Notably, autologous memory CD4(+) T cells proliferated when exposed to tetanus toxoid-pulsed IFN-alpha-treated monocytes. At variance with untreated or GM-CSF + IL-4-exposed monocytes, those challenged with IFN-alpha showed long-lasting STAT-1 phosphorylation. Remarkably, CD83(+)CD14(+) cells were present in varicella skin lesions in close contact with IFN-alpha-producing cells. The present findings suggest that IFN-alpha alone promptly generates nondendritic APCs able to stimulate memory immune responses. This may represent an additional mode of action of IFN-alpha in vivo.  相似文献   

6.
The role of B7 costimulation in CD4/CD8 T cell homeostasis   总被引:7,自引:0,他引:7  
The effect of B7-mediated costimulation on T cell homeostasis was examined in studies of B7-1 (CD80) and B7-2 (CD86) transgenic as well as B7-deficient mice. B7 overexpression in transgenic mice resulted in marked polyclonal peripheral T cell hyperplasia accompanied by skewing toward an increased proportion of CD8 single-positive cells and a decreased proportion of CD4 single-positive cells in thymus and more markedly in peripheral T cells. B7-induced T cell expansion was dependent on both CD28 and TCR expression. Transgenic overexpression of B7-1 or B7-2 resulted in down-regulation of cell surface CD28 on thymocytes and peripheral T cells through a mechanism mediated by intercellular interaction. Mice deficient in B7-1 and B7-2 exhibited changes that were the reciprocal of those observed in B7-overexpressing transgenics: a marked increase in the CD4/CD8 ratio in peripheral T cells and an increase in cell surface CD28 in thymus and peripheral T cells. These reciprocal effects of genetically engineered increase or decrease in B7 expression indicate that B7 costimulation plays a physiological role in the regulation of CD4+ and CD8+ T cell homeostasis.  相似文献   

7.
CD100, a member of the semaphorin family, is a costimulatory molecule in adaptive immune responses by switching off CD72's negative signals. However, CD100's potential pathogenetic effects in damaging immune responses remain largely unexplored. We tested the hypothesis that CD100 plays a pathogenetic role in experimental immune complex glomerulonephritis. Daily injection of horse apoferritin for 14 days induced immune complex formation, mesangial proliferative glomerulonephritis and proteinuria in CD100-intact (CD100+/+) BALB/c mice. CD100-deficient (CD100-/-) mice were protected from histological and functional glomerular injury. They exhibited reduced deposition of Igs and C3 in glomeruli, reduced MCP-1 and MIP-2 intrarenal mRNA expression, and diminished glomerular macrophage accumulation. Attenuated glomerular injury was associated with decreased Ag-specific Ig production, reduced CD4+ cell activation and cytokine production. Following Ag injection, CD4+ cell CD100 expression was enhanced and dendritic cell CD86 expression was up-regulated. However, in CD100-/- mice, dendritic cell CD86 (but not CD80) up-regulation was significantly attenuated. Following i.p. immunization, CD86, but not CD80, promotes early Ag-specific TCR-transgenic DO11.10 CD4+ cell proliferation and IFN-gamma production, suggesting that CD100 expression enables full expression of CD86 and consequent CD4+ cell activation. Transfer of CD100+/+ DO11.10 cells into CD100-/- mice resulted in decreased proliferation demonstrating that CD100 from other sources in addition to CD100 from Ag-specific CD4+ cells plays a role in initial T cell proliferation. Although T cell-B cell interactions also may be relevant, these studies demonstrate that CD100 enhances pathogenetic humoral immune responses and promotes the activation of APCs by up-regulating CD86 expression.  相似文献   

8.
The membrane receptor 2B4 is a CD2 family member that is involved in lymphocyte activation. A fraction of human CD8+ alphabeta T cells up-regulate 2B4 in vivo, and here we demonstrate that this correlates with the acquisition of effector cell properties such as granzyme B and perforin expression, rapid IFN-gamma production, and down-regulation of the lymph node homing chemokine receptor CCR7. In PBLs from healthy donors, cytomegalovirus-specific effector T cells were 2B4 positive, whereas naive melanoma Ag (Melan-A/melanoma Ag recognized by T cells-1)-specific T cells were 2B4 negative. In melanoma patients, Melan-A-specific T cells up-regulated 2B4 in parallel with in vivo differentiation. This occurred in PBLs after vaccination with Melan-A peptides and in tumor-infiltrated lymph nodes, likely through disease-associated activation of Melan-A-specific T cells. Thus, 2B4 expression correlates with CD8+ T cell differentiation in vivo.  相似文献   

9.
Stromal cell-derived factor (SDF)-1 is a chemoattractant for T cells, precursor B cells, monocytes, and neutrophils. SDF-1alpha was also found to up-regulate expression of early activation markers (CD69, CD25, and CD154) by anti-CD3-activated CD4+ T cells. In addition, SDF-1alpha costimulated proliferation of CD4+ T cells and production of IL-2, IFN-gamma, IL-4, and IL-10. Stimulation with SDF-1alpha alone did not induce activation marker expression, proliferation, or cytokine production by the CD4+ T cells. SDF-1alpha-mediated costimulation was blocked by anti-CXC chemokine receptor-4 mAb. RANTES also increased activation marker expression by anti-CD3-stimulated peripheral CD4+ T cells, but less effectively than SDF-1alpha did, and did not up-regulate IL-2 production and proliferation. These results indicate that SDF-1 and CXC chemokine receptor-4 interactions not only play a role in T cell migration but also provide potent costimulatory signals to Ag-stimulated T cells.  相似文献   

10.
Although positive CD28 costimulation is needed for the generation of natural CD4+CD25+ regulatory T cells, we report that negative CTLA-4 costimulation is necessary for generating phenotypically and functionally similar adaptive CD4+CD25+ suppressor cells. TGF-beta could not induce CD4+CD25- cells from CTLA-4(-/-) mice to express normal levels of FoxP3 or to develop suppressor activity. Moreover, blockade of CTLA-4 following activation of wild-type CD4+ cells abolished the ability of TGF-beta to induce FoxP3-expressing mouse suppressor cells. TGF-beta accelerated expression of CTLA-4, and time course studies suggested that CTLA-4 ligation of CD80 shortly after T cell activation enables TGF-beta to induce CD4+CD25- cells to express FoxP3 and develop suppressor activity. TGF-beta also enhanced CD4+ cell expression of CD80. Thus, CTLA-4 has an essential role in the generation of acquired CD4+CD25+ suppressor cells in addition to its other inhibitory effects. Although natural CD4+CD25+ cells develop normally in CTLA-4(-/-) mice, the lack of TGF-beta-induced, peripheral CD4+CD25+ suppressor cells in these mice may contribute to their rapid demise.  相似文献   

11.
CTLA-4 has been shown to be an important negative regulator of T cell activation. To better understand its inhibitory action, we constructed CTLA-4 transgenic mice that display constitutive cell surface expression of CTLA-4 on CD4 and CD8 T cells. In both in vivo and in vitro T cell responses, CTLA-4 overexpression inhibits T cell activation. This inhibition is dependent on B7 and CD28, suggesting that overexpressed CTLA-4 inhibits responses by competing with CD28 for B7 binding or by interfering with CD28 signaling. In addition, expression of the transgene decreases the number of CD25+Foxp3+ T cells in these mice, but does not affect their suppressive ability. Our data confirm the activity of CTLA-4 as a negative regulator of T cell activation and that its action may be by multiple mechanisms.  相似文献   

12.
A CD8+ T cell lymphocytosis in the peripheral blood is associated with the establishment of latency following intranasal infection with murine gammaherpesvirus-68. Remarkably, a large percentage of the activated CD8+ T cells of mice expressing different MHC haplotypes express V beta 4+ TCR. Identification of the ligand driving the V beta 4+CD8+ T cell activation remains elusive, but there is a general correlation between V beta 4+CD8+ T cell stimulatory activity and establishment of latency in the spleen. In the current study, the role of CD4+ T cells in the V beta 4+CD8+ T cell expansion has been addressed. The results show that CD4+ T cells are essential for expansion of the V beta 4+CD8+ subset, but not other V beta subsets, in the peripheral blood. CD4+ T cells are required relatively late in the antiviral response, between 7 and 11 days after infection, and mediate their effect independently of IFN-gamma. Assessment of V beta 4+CD8+ T cell stimulatory activity using murine gammaherpesvirus-68-specific T cell hybridomas generated from latently infected mice supports the idea that CD4+ T cells control levels of the stimulatory ligand that drives the V beta 4+CD8+ T cells. As V beta 4+CD8+ T cell expansion also correlates with levels of activated B cells, these data raise the possibility that CD4+ T cell-mediated B cell activation is required for optimal expression of the stimulatory ligand. In addition, in cases of low ligand expression, there may also be a direct role for CD4+ T cell-mediated help for V beta 4+CD8+ T cells.  相似文献   

13.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

14.
MHC class I molecules play a role in the maintenance of the naive peripheral CD8+ T cell pool. The mechanisms of the peripheral maintenance and the life span of residual CD8+ cells present in the periphery of beta 2-microglobulin-deficient (beta 2m-/-) mice are unknown. We here show that very few CD8+ cells in beta 2m-/- mice coexpress CD8 beta, a marker of the thymus-derived CD8+ T cells. Most of the CD8 alpha+ cells express CD11c and can be found in beta 2m/RAG-2 double-deficient mice, demonstrating that these cells do not require rearranged Ag receptors for differentiation and survival and may be of dendritic cell lineage. Rare CD8 alpha+CD8 beta+ cells can be detected following in vivo alloantigenic stimulation 2 wk after the adult thymectomy. Selective MHC class I expression by bone marrow-derived cells does not lead to an accumulation of CD8 beta+ cells in beta 2m-/- mice. These findings demonstrate that 1) thymic export of CD8+ T cells in beta 2m-/- mice is reduced more severely than previously thought; 2) non-T cells expressing CD8 alpha become prominent when CD8+ T cells are virtually absent; 3) at least some beta 2m-/- CD8+ T cells have a life span in the periphery comparable to wild-type CD8+ cells; and 4) similar ligands induce positive selection in the thymus and survival of CD8+ T cells in the periphery.  相似文献   

15.
Lymphocyte homeostasis is a central biological process that is tightly regulated. However, its molecular and cellular control is poorly understood. We show that aged mice deficient in lymphocyte activation gene 3 (LAG-3), an MHC class II binding CD4 homologue, have twice as many T cells as wild-type controls. CD4(+) and CD8(+) LAG-3-deficient T cells showed enhanced homeostatic expansion in lymphopenic hosts, which was abrogated by ectopic expression of wild-type LAG-3, but not by a signaling-defective mutant. In addition, in vivo treatment with anti-LAG-3 mAb resulted in enhanced T cell expansion to a level comparable to that in LAG-3-deficient cells. This deregulation of T cell homeostasis also resulted in the expansion of multiple cell types, including B cells, macrophages, granulocytes, and dendritic cells. Lastly, regulatory T cells were dependent on LAG-3 for their optimal control of T cell homeostasis. Our data suggest that LAG-3 negatively regulates T cell homeostasis by regulatory T cell-dependent and independent mechanisms.  相似文献   

16.
A rapid induction of effector functions in memory T cells provides rapid and intensified protection against reinfection. To determine potential roles of IL-15 in early expansion and activation of memory CD8+ T cells in secondary immune response, we examined the cell division and cytotoxicity of memory CD8+ T cells expressing OVA(257-264)/Kb-specific TCR that were transferred into IL-15-transgenic (Tg) mice, IL-15 knockout (KO) mice, or control C57BL/6 mice followed by challenge with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). In vivo CTL activities and expression of granzyme B of the transferred CD8+ T cells were significantly higher in the IL-15 Tg mice but lower in the IL-15 KO mice than those in control mice at the early stage after challenge with rLM-OVA. In contrast, there was no difference in the cell division in IL-15 Tg mice and IL-15 KO mice compared with those in control mice. In vivo administration of rIL-15 conferred robust protection against reinfection via induction of granzyme B in the memory CD8+ T cells. These results suggest that IL-15 plays an important role in early activation of memory CD8+ T cells.  相似文献   

17.
The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell responses. Recently, we reported that CD83 also has a function on B cells: Ubiquitous transgenic (Tg) expression of CD83 interfered with the immunoglobulin (Ig) response to infectious agents and to T cell dependent as well as T cell independent model antigen immunization. Here we compare the function of CD83Tg B cells that overexpress CD83 and CD83 mutant (CD83mu) B cells that display a drastically reduced CD83 expression. Correlating with CD83 expression, the basic as well as the lipopolysaccharide (LPS) induced expression of the activation markers CD86 and MHC-II are significantly increased in CD83Tg B cells and reciprocally decreased in CD83mu B cells. Wild-type B cells rapidly upregulate CD83 within three hours post BCR or TLR engagement by de novo protein synthesis. The forced premature overexpression of CD83 on the CD83Tg B cells results in reduced calcium signaling, reduced Ig secretion and a reciprocally increased IL-10 production upon in vitro activation. This altered phenotype is mediated by CD83 expressed on the B cells themselves, since it is observed in the absence of accessory cells. In line with this finding, purified CD83mu B cells displayed a reduced IL-10 production and slightly increased Ig secretion upon LPS stimulation in vitro. Taken together, our data strongly suggest that CD83 is expressed by B cells upon activation and contributes to the regulation of B cell function.  相似文献   

18.
Molecular studies have shown that CD1 proteins present self and foreign lipid Ags to T cells, but the possible roles of CD1 in human autoimmune diseases in vivo are not known, especially for the group 1 CD1 isoforms (CD1a, CD1b, and CD1c). To investigate the hypothesis that CD1-restricted T cells might be activated and home to target tissues involved in Hashimoto's thyroiditis and Graves' disease, we performed ex vivo analysis of lymphocytes from peripheral blood and autoinflammatory lesions of thyroid tissue. Immunofluorescence analysis identified two types of CD1-expressing APCs in inflamed thyroid tissues. CD1a, CD1b, and CD1c were expressed on CD83+ dendritic cells, and CD1c was expressed on an abundant population of CD20+ IgD+ CD23- CD38- B cells that selectively localized to the mantle zone of lymphoid follicles within the thyroid gland. CD1c-restricted, glycolipid-specific T cells could not be detected in the peripheral blood, but were present in polyclonal lymphocyte populations isolated from affected thyroid glands. In addition, polyclonal thyroid-derived lymphocytes and short-term T cell lines were found to recognize and lyse targets in a CD1a- or CD1c-dependent manner. The targeting of CD1-restricted T cells and large numbers of CD1-expressing APCs to the thyroid gland during the early stages of autoimmune thyroiditis suggests a possible effector function of CD1-restricted T cells in tissue destruction and point to a new model of organ-specific autoimmune disease involving lipid Ag presentation.  相似文献   

19.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

20.
The peripheral lymphocyte pool size is governed by homeostatic mechanisms. Thus, grafted T cells expand and replenish T cell compartments in lymphopenic hosts. Lymphopenia-driven proliferation of naive CD8+ T cells depends on self-peptide/MHC class I complexes and the cytokine IL-7. Lymphopenia-driven proliferation and maintenance of memory CD8+ T cells are MHC independent, but are believed to require IL-7 and contact with a bone marrow-derived cell that presents the cytokine IL-15 by virtue of its high affinity receptor (IL-15Ralpha). In this study we show that optimal spontaneous proliferation of grafted naive and memory CD8+ T cells in mice rendered lymphopenic through gene ablation or irradiation requires the presence of CD11chigh dendritic cells. Our results suggest a dual role of CD11chigh dendritic cells as unique APC and cytokine-presenting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号