首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological innervation pattern of developing fetal and neonatal rabbit hearts was delineated histochemically by a cholinesterase/silver procedure and immunohistochemically with the monoclonal antibody HNK1, an antibody which recognizes some cells derived from neuroectoderm. Cholinesterase-containing nerves appeared distally on the outflow tract by gestational day 15 (G15). Isolated cells with cholinesterase-stained fine processes were present near the base of the pulmonary trunk. HNK1 antibody stained the same nerves and ganglia revealed by the cholinesterase reaction and other nerves in the rabbit heart. It was used to confirm that cells with fine neuron-like processes were present before nerve ingrowth. The G14 heart contained many HNK1 staining cells in the right atrium, outflow, and inflow tracts; cells with fine processes were few but increased at G16. By G17, a plexus of interweaving nerves and associated cells began to form at the base of the pulmonary trunk. Fine nerves encircled the base of the aorta, and others crossed the intercaval region dorsally. At G19, nerves 1) extended downward from a rich "bulbar" plexus along the front ventricular surface, 2) grew near the epicardial surface at the base of the heart along the atrial floor and ventricular roof, 3) traversed the vena cavae and intercaval region to enter the atrial roof, and 4) crossed the coronary sinus to reach the back ventricular walls. By G23, cholinesterase-staining nerves and ganglia in the atria and, epicardially, in the ventricles formed the general innervation pattern of the newborn and adult rabbit heart.  相似文献   

2.
The sinoatrial ring bundle (SARB), was originally described as a "whitish bundle of tissue which describes an almost complete loop around the two venae cavae and the coronary sinus" in the adult rabbit heart (Paes de Carvalho et al., 1959). The histologically and electrophysiologically differentiated structure, derived from the embryonic venous valves, was suitably placed for rapid conduction from sinoatrial (SA) to atrioventricular (AV) node, but no evidence was found for this role. Today, the function of the SARB remains obscure. Cholinesterase/silver staining reveals the neural pattern associated with the SARB and suggests a function. Throughout its extent, the SARB contains a bundle of parallel muscle fibers and accompanying long nerves. The nerves distribute to structures at either side of the loop: superolaterally to pectinate muscle and inferomedially to the region of the AV node. Along the curve of the right SARB, the nerves contribute to a dense neural plexus with nerves coiled around muscle. The plexus communicates with the nearby SA node and with the ganglia inferior to the node near the inferior vena cava. The morphological pattern of neural elements is suitably organized to suggest tension monitoring and internodal, neural communication.  相似文献   

3.
The innervation to the cardiac organs and vessels of the octopods Eledone cirrhosa, E. moschata and Octopus vulgaris is described from vitally stained fresh material and wax-embedded sections. This innervation arises from the paired visceral nerves and includes two main peripheral ganglia (fusiform and cardiac) on each side. Several new details of the innervation are reported. Nerves supplying the lateral venae cavae arise from the ventricular nerves at the level of the ventricle. Nerve fibres run to the efferent branchial vessels from the cardiac ganglia. A small ganglion, lying on the auriculo-ventricular nerve, is described for some specimens of both species of Eledone, and is named the auricular ganglion. Commissural strands linking the right and left ventricular nerves of either side are found in Eledone, comparable to those previously described from Octopus. The detailed branching pattern of the innervation shows considerable individual variation and consistent interspecific differences. In E. cirrhosa the fine fibres innervating the inner and outer muscle layers of the auricle show distinct differences in their configuration. Innervation at the surface of the ventricular lumen and around the coronary arterial vessels shows evidence of specialization. The muscle of the branchial heart, particularly the valve leaflets at the junction of the heart and the lateral vena cava, is abundantly innervated. The observations are discussed in relation to other cephalopods and to their probable physiological significance. It is suggested that they provide evidence for a greater degree of neural influence in the control of the cardiac organs than is usually supposed and that they support the idea that the lateral venae cavae have a significant role in the generation of circulatory pressures.  相似文献   

4.
The purpose of this study was to describe the autonomic innervation of the carotid sinus and heart in the rhesus monkey. Nine male rhesus monkeys (Macaca mulatta) and one male crab-eating macaque (M. fascicularis) were carefully dissected from the origin of the vagus nerves and superior cervical ganglia to the level of the fourth thoracic ganglion. The specimens were either freshly killed or obtained no later than 24 hours post mortem. The macaque monkeys were found to possess an innervation pattern that displayed features common to dog (connections between the vagus nerves and middle cervical ganglia), baboon (distinct cervical sympathetic and cervical vagal nerve trunks), and man (nerves projecting from the middle cervical and stellate ganglia to the heart). Distinct inferior cervical and first thoracic ganglia were never seen, but rather, large and well defined stellate ganglia were found. The macaque innervation pattern, when considered as a whole, most closely resembled the baboon.  相似文献   

5.
R S Purwar 《Acta anatomica》1976,96(2):149-161
An investigation was undertaken to demonstrate the neural elements of the lung of Francolinus pondicerianus, from the point of view of neurohistology and histochemistry. The staining of the neural elements was done by the cholinesterase technique with a maintained pH of 5.2, temperature 40 degrees C and incubation period of 19 h. Distribution of nerves in association with bronchial cartilage, pulmonary vessels and bronchi has been described and discussed. The distribution of the ganglia in association with blood vessels, bronchi, cartilage, various plexuses and the neural terminal terminal network has also been described. The innervation of the bronchi and their branches, and formation of the neural terminal network has been studied, as well as the distribution of cholinesterase in bronchi, blood vessels, muscles, ganglia, and nerve fibres.  相似文献   

6.
Changes of the right atrial pressure, superior and inferior vena cava flows, right ventricular myocardial contractility (first derivate of right ventricular pressure, dP/dt max) following i.v. injection of acetylcholine, histamine and isoproterenol, were studied in acute experiments on anaesthetized mongrel cats with artificial lung ventilation and opened chest. The right atrial pressure in those cases could be increased (I group of animals) or decreased (II group). In maximal shifts of right atrial pressure following acetylcholine injection, the superior vena cava flow increased but the inferior vena cava flow decreased in equal proportion. When the right ventricular myocardial contractility decreased more than the right atrial pressure was augmented, and when the cardiac negative inotropic effect was weak, the right atrial pressure was reduced. After histamine injection in both groups of animals, right ventricular myocardial contractility was increased on the same level, and changes of the inferior vena cava flow were insignificant. The right atrial pressure was elevated following greater increase of superior vena cava flow. Isoproterenol caused the positive cardiac inotropic effect and augmenting of the superior vena cava flow in both groups of animals. The right atrial pressure was elevated if the inferior vena cava flow increased and, on the other hand, when the inferior vena cava flow decreased the right atrial pressure was reduced. Thus different maximal changes of the right atrial pressure following i.v. injection of acetylcholine, histamine and isoproterenol could be explained by different hemodynamic mechanisms of the interaction between superior and inferior vena cava flow shifts and changes of the right ventricular myocardial contractility.  相似文献   

7.
Atrial natriuretic factor in the vena cava and sinus node   总被引:2,自引:0,他引:2  
We investigated the localization of atrial natriuretic factor (ANF) mRNA and of immunoreactive ANF in the vena cava and sinus node of rat and, for comparative purposes, in atria and ventricles. In situ hybridization with an ANF cRNA probe revealed that the supradiaphragmatic portion of the inferior vena cava contains almost as much mRNA as the atria, whereas the levels were less in the superior vena cava and higher than in ventricles in the sinus node. Immunoreactive ANF (high Mr form) was found to be 22 times less abundant in the supradiaphragmatic vena cava and 148 times less abundant in the superior vena cava than in atrial cardiocytes. The wall of the supradiaphragmatic portion of the vena cava and the valve (eustachian valve) that separates the atrial cavity from that of the vein are made up of atrial-like cardiocytes containing secretory granules. The subendothelial area of the superior vena cava also contains atrial-like cardiocytes with secretory granules, whereas the outer portion of the vein is made up of "transitional cells" without or with only a few secretory granules. Secretory granules in the vena cava and nodal cells, as well as transitional cells, contain immunoreactive ANF. With immunocryoultramicrotomy, virtually all cells, whether atrial-like, transitional, or nodal, and even those without secretory granules, were found to contain immunoreactive ANF in their Golgi complex and in secretory vesicles in the vena cava and in the sinus node.  相似文献   

8.
Axonal tracing and immunocytochemical techniques were used to study the innervation of the head retractor muscle (HRM) in the pond snail Lymnaea stagnalis L. Fibers of both the superior and inferior cervical nerves which innervate the HRM form endings that comply with the structure of chemical synapses. The somata of neurons with axons in these nerves are located in all except the buccal ganglia of the central nervous system, and this seems to be a special feature of the HRM motor system. By staining the filamentous actin with Oregon-green conjugated phalloidin, we demonstrated that the HRM has a multiterminal innervation and one muscle fiber can contain several synaptic endings which appear to be both morphologically and physiologically different. The morphological diversity of synaptic vesicles suggests a multiplicity of neurotransmitters acting on these nerve-muscle junctions. Immunocytochemical evidence was found for a strong serotonergic and FMRFamidergic innervation of muscle fibers through axons of the inferior cervical nerve. The thin fibers of the inferior cervical nerve possess immunoreactivity to glutamate, gamma-aminobutyric acid (GABA) and choline-acetyltransferase, and form sparser innervation patterns in the muscle. Our results indicate that several neurotransmitters are present in the nerves innervating the Lymnaea HRM and may therefore participate in the control of this muscle. The possible behavioral significance of such different neurotransmitter sets involved in the regulation of contractions is discussed.  相似文献   

9.
The dissection of nerves and ganglia anatomically related to the pelvic organs revealed one inferior mesenteric ganglion, two testicular ganglia, two hypogastric nerves, two pelvic ganglia and two pelvic nerves. The histochemical demonstration of catecholamines by a glyoxylic acid fluorescence method revealed a rich sympathetic innervation in the ductus deferens, in the three segments of the prostate and in the convoluted ductuli efferentes. The testis, epididymis and all three pairs of bulbourethral glands presented fluorescent nerve fibers only around blood vessels. Removal of the inferior mesenteric and testicular ganglia, and hypogastric neurectomy with our without ligature and sectioning of testicular arteries, had no effect on the density of the nonvascular fluorescent fibers. Removal of the periprostatic tissue caused complete denervation of the prostate and marked denervation of the ductuli efferentes and ductus deferens. Small ganglia containing fluorescent nerve cell bodies were found close to the capsule of the prostate. The results indicate that short adrenergic neurons are responsible for the sympathetic innervation of the reproductive organs of the male opossum.  相似文献   

10.
Summary Immunohistochemical properties of the terminal nerve network in the rat heart were assessed by use of the elution-restaining method. The colocalization of the enzymes involved in catecholamine synthesis (tyrosine hydroxylase — TH, dopamine--hydroxylase — DBH) as well as the respective distributions of the neuropeptides associated with the adrenergic nervous system (neuropeptide tyrosine — NPY, C-terminal flanking peptide of neuropeptide Y — C-PON) were studied in series of serial sections throughout the interatrial septum and the atrioventricular junction. Our data suggest that ganglion cells of sulcus terminalis as well as the epicardial ganglia enclosed between the superior vena cava and ascending aorta are VIP- and TH-negative, but neuropeptide Y- and DBH-immunoreactive. They give rise to three intraseptal nerves directed towards the specialised structures of the atrioventricular junction. These nerve fascicles contain abundant, thick TH-immunoreactive nerve fibres and scarce, thin NPY- and DBH-immunoreactive fibres. The cell bodies of the intramural ganglion cells localized between the right and left branches of the bundle of His (Moravec and Moravec 1984) are strongly TH- and DBH-immunoreactive. They are innervated by thick nerve fibres having the same immunohistochemical properties (NPY- and DBH-immunoreactivities) as those of a subpopulation of the epicardial ganglion cells and seem to supply some of the TH-immunoreactive nerve fibres directed via the intraseptal nerves to the epicardial ganglia. The existence of a multicomponent nerve network, characterized by a reciprocal innervation of the sinus node and atrioventricular node areas, is suggested by our immunohistochemical data.  相似文献   

11.
In acute experiments on anesthetized cats, intravenous injection of the norepinephrine and angiotensin caused different changes of right atrial pressure in intact animals (decreasing--I group, of animals, and increasing--II group). After right and left vagus nerves had been cut, the right atrial pressure in the I group of animals decreased, but its changes were lesser than in intact animals due to slowing down of the increase of the right ventricular myocardial contractility and venous return. The latter was the result of severe diminution of the increase of the superior vena cava flow compared with the intact animals, meanwhile the value of the inferior vena cava flow did not change. In the II group animals after vagotomy and intravenous injection of the noripinephrine and angiotensin the sign of the right atrial pressure became negative, i. e. the direction of its shifts changed to the opposite, compared with intact animals. In this case, the changes of the sign of the right atrial pressure was caused by the removal of the reflectory inhibitory vagal influences on the heart, because the values of the right ventricular myocardial contractility and venous return were the same as in intact animals of the group, due to decreasing of the value of the superior vena cava flow and increasing of the shifts of the inferior vena cava flow. The vagotomy alone caused also different changes (decreasing or increasing) of right atrial pressure following increasing of the right ventricular myocardial contractility, meanwhile the changes of the venous return were insignificant. Direct electrical stimulation of both the right and the left vagus nerves caused the increasing of the right atrial pressure and decreasing of the right ventricular myocardial contractility and venous return. Thus we concluded, that different changes of the right atrial pressure in animals following intravenous injection of the pressor vasoactive drugs could be the result of different manifestations of the vagal afferent impulsation, which has influence on the sympathetic tonic discharges on the vessels of the regions of the superior and inferior vena cava, and the vagal reflectory inhibitory influences on the heart.  相似文献   

12.
We used confocal laser scanning microscopy and fluorescent immunohistochemistry to study the developmental pattern and distribution of specific neuronal phenotypes within the intrinsic cardiac nervous system in whole-mount atrial preparations from newborn to 5 week old rats. Individual ganglia and neuronal cell bodies were localized by means of two general neuronal markers: protein gene product 9.5 (PGP) and microtubule-associated protein two (MAP). In rats < or =2 weeks old there were two main subpopulations of intrinsic neurons located in the intraatrial septum and around the origin of the superior vena cava. The more abundant was a population of strongly tyrosine hydroxylase (TH) immunoreactive (IR) neurons (10-40 microm in diameter) most of which were also PGP-IR. The second, less numerous (approximately 60-70% than the TH-IR group) type of neurons exhibited ChAT-IR which colocalized with MAP-IR. Towards the end of the second postnatal week and during the third, the ganglia containing these neurons became more numerous and their localization also included tissues around the origins of the inferior vena cava and the pulmonary veins, as well as both atrial walls close to the AV junction. During the second and third postnatal weeks, when the extrinsic innervation of the adrenergic and cholinergic phenotypes largely increases, the intrinsic innervation also changed greatly, and around the 21st postnatal day it appeared to acquire mature characteristics. The TH-IR neurons changed their characteristics and formed two types of ganglia. The larger ganglia containing large cells (20-40 microm in diameter) expressed TH-IR mostly close to their inner body surface (approximately 80-90% of identified neurons). Most of these neurons also expressed neuropeptide Y (NPY)-IR, specifically around their nuclei. The second type of small strongly TH-IR neurons (approximately 10% of all identified neurons) were contained in smaller groups (20-50 cells) which were usually embedded into much larger ganglia (100-400 cells), containing large (20-50 microm) neurons. Unlike all other intrinsic neurons, these small TH-IR cells did not exhibit any PGP-IR or MAP-IR. The number of ChAT-IR neurons increased at this stage, reaching approximately 90% of the neurons identified by the general neuronal markers. These neurons were surrounded by a rich network of cholinergic varicose nerve fibers, some of which were likely of an extrinsic origin. We have also identified relatively small ganglia expressing immunoreactivity to vasoactive intestinal polypeptide (VIP), and to substance P (SP). The presented data indicate that the phenotypes of intrinsic neurons in the rat heart change greatly during the first month of postnatal development. This may be at least partially related to the development and maturation of functional extrinsic nervous control of the heart.  相似文献   

13.
Summary The localization and distribution of neuropeptide Y-like immunoreactivity in the guinea-pig heart were studied by use of immunohistochemical methods. A widespread distribution of immunoreactive processes was observed in all regions of the heart. They occur either singly or together with several other immunoreactive processes and are most often aligned parallel to the myocardial bundles. A dense network of processes is present in the region of both the sinuatrial and atrioventricular nodes and single fibers are occasionally observed to be closely associated with nodal ganglion cells. Positive cell bodies were not seen within the heart. All small, medium and large coronary vessels are surrounded by a dense network of immunoreactive processes. A rich innervation at the media-adventitia junction of the aorta, pulmonary trunk, superior and inferior vena cava was also observed. Comparison of adjacent sections stained with antisera directed to avian pancreatic polypeptide, carboxyl-terminal hexapeptide of pancreatic polypeptide or neuropeptide Y demonstrated a very similar immunoreactive pattern, suggesting that these antisera are reacting with the same or a closely related substance. Likewise, the same immunoreactive patterns were observed in adjacent sections incubated in antiserum to neuropeptide Y or tyrosine hydroxylase, and analysis of elution-restained sections demonstrated that the same processes contain both neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity. Neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity was reduced by the same magnitude after treatment with the sympathetic neurotoxin 6-hydroxydopamine, but it was not affected by the primary sensory neurotoxin capsaicin. Furthermore, the pattern of neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity did not match the staining patterns observed with antisera to vasoactive intestinal polypeptide or substance P or with the acetylcholinesterase staining pattern. In conclusion, neuropeptide Y-like immunoreactivity in the heart and great vessels coexists with that for catecholamines and is likely to originate from sympathetic ganglia.  相似文献   

14.
The present investigation was undertaken for the study of the comparative neurohistological observations of pancreatic-Artery (blood vessel) in Gallus domesticus (white leghorn) and Suncus murinus (Indian musk shrew) by cholinesterase technique. In Gallus, the innervation of arteries (blood vessel) was by a good number of non-myelinated nerevs, which formed the periarterial plexus in participation with the postganglionic fibres at one end and the fibres of the nerve cells of the other end. In Suncus, the periarterial and AChE-positive ganglia were arranged in chain-like fashion on the periphery of the artery. Periarterial plexus was formed by tortuous, myelinated nerves and the nerve fibres of the ganglia.  相似文献   

15.
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor α2 (GFRα2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRα2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.This study was supported by the National Heart, Lung, and Blood Institute (grant HL-54633).  相似文献   

16.
17.
Synopsis The distribution of cholinesterase activity was studied histochemically in the autonomic ganglia of the human sympathetic trunk and the vagus nerve using a modified Koelle's technique. It was found that the cytoplasm of both sympathetic and parasympathetic nerve cells contained acetylcholinesterase but the intensity of the enzyme reaction varied from cell to cell in both types of ganglia. Tissue elements surrounding the nerve cells showed a low butyrylcholinesterase activity in the ganglia of the sympathetic trunk but a high one in the terminal ganglia of the vagus nerve. Postganglionic nerves fibres gave a weak reaction for acetylcholinesterase in the sympathetic, but a strong one in the vagus ganglia. The distribution pattern of cholinesterases in human autonomic ganglia was found to be different from that of a variety of laboratory and wild animals.  相似文献   

18.
V Borelli 《Acta anatomica》1975,92(1):122-128
A topographic and histologic study of the sinuatrial node was made in the hearts of 12 buffalo of the Jaffarabadi breed, 8 adults (5 females and 3 males) and 4 term fetuses (3 female and 1 male). The nodal tissue was localized at the junction of the vena cava superior with the right atrium, occupying, more precisely, the entire extent of the terminal groove, the dihedral cavoatrial angle and the first part of the auricular surface of the junction, which is contiguous with this angle. This structure contains cells with single or double nuclei, round or oval in shape, surrounded by a light halo, with scattered chromatin and a well-defined nucleolus, acidophilic cytoplasm containing, in comparison with the common myocardium, few sinuous myofibrils with transverse striations and a larger amount of glycogen. We also observed arteries of small and medium caliber, with veins and nerves accompanying the nodal mass, while the nerve ganglia were situated opposite the sinuatrial node.  相似文献   

19.
Some parasympathetic ganglionic cells are located in the epicardial fat pad between the medial superior vena cava and the aortic root (SVC-Ao fat pad) of the dog. We investigated whether the ganglionic cells in the SVC-Ao fat pad control the right atrial contractile force, sinus cycle length (SCL), and atrioventricular (AV) conduction in the autonomically decentralized heart of the anesthetized dog. Stimulation of both sides of the cervical vagal complexes (CVS) decreased right atrial contractile force, increased SCL, and prolonged AV interval. Stimulation of the rate-related parasympathetic nerves to the sinoatrial (SA) node (SAPS) increased SCL and decreased atrial contractile force. Stimulation of the AV conduction-related parasympathetic nerves to the AV node prolonged AV interval. Trimethaphan, a ganglionic nicotinic receptor blocker, injected into the SVC-Ao fat pad attenuated the negative inotropic, chronotropic, and dromotropic responses to CVS by 33 approximately 37%. On the other hand, lidocaine, a sodium channel blocker, injected into the SVC-Ao fat pad almost totally inhibited the inotropic and chronotropic responses to CVS and partly inhibited the dromotropic one. Lidocaine or trimethaphan injected into the SAPS locus abolished the inotropic responses to SAPS, but it partly attenuated those to CVS, although these treatments abolished the chronotropic responses to SAPS or CVS. These results suggest that parasympathetic ganglionic cells in the SVC-Ao fat pad, differing from those in SA and AV fat pads, nonselectively control the atrial contractile force, SCL, and AV conduction partially in the dog heart.  相似文献   

20.
I Kamel  Y Mikhail  S Beshir 《Acta anatomica》1979,104(2):237-241
The pancreas of the adult rat is examined by the silver impregnation method. The intrapancreatic nerves form the following three plexuses: periacinous, periinsular and perivascular; anastomosing fibers are presented between the three plexuses. Sympathetic ganglia as well as parasympathetic nerve cells are met with in association and in close proximity to the islet tissue. The significance of the double innervation of the islet tissue is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号