首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
农田生态系统植物多样性对害虫种群数量的影响   总被引:32,自引:5,他引:32  
着重分析植物多样性影响害虫发生为害及种群数量的生态学机制,综合评述了关于这种机制的两种主要假说,即天敌假说和资源集中假说.同时总结了植物多样性增大和减少对害虫控制的有利和不利因素.研究表明农田生态系统中植物多样性的增大在多数情况下能导致某些害虫种群数量的下降,但是目前很难就不同栖境中所有类型的害虫形成一般性的结论  相似文献   

2.
植物根系代谢物是植物-微生物互作的桥梁纽带,作为信号物质和微生物营养源调控着微生物的群落结构和多样性,而根区微生物区系的改变则反作用于植物的生长、发育和抗性。本文聚焦植物根系代谢物介导的植物-微生物互作,梳理了植物-微生物互作研究中次级代谢物的种类、作用及其检测手段;探讨了植物通过调节自身代谢物以适应品种进化及繁衍后代过程中发挥的功能作用;阐述了逆境胁迫下植物利用根系代谢物招募特异微生物(解磷、溶磷)或者有益微生物促进自身生长以缓解胁迫压力的机制;分析了根系代谢物作为信号物质诱导植物抗病的方式"求救假说",为可持续农业发展提供思路和理论依据。  相似文献   

3.
植物与植食性昆虫防御与反防御的三个层次   总被引:3,自引:0,他引:3  
在植物与植食性昆虫长期的进化过程中,双方形成了一系列的防御与反防御策略。本文将这些策略归为3个层次:第一层次起始于植物对植食性昆虫相关分子模式的识别,并由此激活植食性昆虫分子模式相关的免疫反应。这种免疫反应对于不能产生效应子的植食性昆虫种群是有效的;第二层次是一些植食性昆虫种群可以通过释放特异性效应子抑制植物产生的植食性昆虫分子模式相关的免疫反应,从而在植物上正常生长与繁衍;第三层次是一些植物基因型可以通过特异抗性基因识别植食性昆虫的效应子,进而激活效应子诱导的免疫反应,表现出特异的抗虫性。深入揭示植物与植食性昆虫间的这种分子互作机制,不仅在理论上有助于理解昆虫与植物的协同进化机制,而且在实践上可为作物抗性品种的培育提供重要的技术指导。  相似文献   

4.
水分作为一种重要的环境因子,对陆地生物生长发育有着至关重要的作用。随着全球气候变暖,异常天气频发,水分胁迫也成为了影响农作物及其害虫生长发育的重要逆境胁迫。本文从水分胁迫对植食性昆虫的直接和间接影响进行阐述:从湿度、降雨量和土壤含水量角度讨论了水分胁迫对昆虫的直接影响;从水分影响植物和天敌角度,讨论了水分胁迫对植物-植食者性昆虫-天敌三营养阶层互作的间接影响,以期为理解农业害虫发生机制及其可持续治理决策提供研究信息和理论参考。  相似文献   

5.
芥子油苷(glucosinolate, GS)是十字花科植物重要的次生代谢物,对调节十字花科植物与昆虫间的关系起着重要作用.由于GS及其代谢产物具有一定的毒性,因此它是十字花科植物抵御广食性植食昆虫攻击的有力手段.而寡食十字花科植物的昆虫由于具备多种GS应对机制,因此可通过GS这一十字花科植物特有的次生代谢物进行寄主选择.被植食性昆虫摄入的GS不仅可以影响天敌的生长发育,而且还对天敌有一定的驱避作用.而虫害后十字花科植物释放的GS代谢产物又可作为天敌的寄主选择信息.本文结合该领域的一些最新研究成果,从GS对植食性昆虫的毒性、寡食性害虫的寄主选择、植食性昆虫对GS的适应机制、虫害对GS-黒芥子酶系统的诱导,以及GS对天敌的影响等方面对GS如何影响植物与昆虫间的相互关系进行了综述,并就今后该领域的研究方向、研究方法提出建议.  相似文献   

6.
PTI和ETI是植物在长期进化过程中形成的两类抵抗病原物的机制。基因对基因假说的抗病方式属于ETI抗性机制的一种,该假说认为具有保守NB-LRR结构域的R蛋白识别病原物非保守的无毒蛋白效应子(Avr),激活防卫反应信号途径,导致过敏性坏死。植物抗病基因(R)与病原菌无毒基因(Avr)产物间的直接或间接相互作用而产生的基因对基因抗性是植物抗病性的重要形式,该文对植物抗病蛋白与无毒蛋白相互作用机制进行了综述。其中,间接相互作用模式是主要方式。  相似文献   

7.
森林植物物种与土壤微生物之间的相互作用决定森林生物多样性。尤其是土壤中的病原菌、菌根菌等微生物在森林物种多样性保护中起到重要作用。Janzen-Connell假说和植物-土壤反馈模型是利用植物与土壤微生物之间的相互作用关系解释森林物种多样性机制的重要模型。本文针对土壤真菌解释森林物种多样性机制进行了综合评述,介绍了病原菌和菌根菌各自在森林实生苗更新的作用机制,探讨病原菌及其菌根菌两者对森林物种多样性的相对重要性,森林实生苗与土壤微生物之间相互作用的变化规律,总结了近年来国际森林物种多样性机制的研究。提出了病原菌和菌根菌两者共同在生态系统中的作用,并探讨未来的研究方向。  相似文献   

8.
虫害诱导植物间接防御反应的激发与信号转导途径   总被引:2,自引:0,他引:2  
植物通过产生和释放挥发性物质增加植食性昆虫的天敌对其寄主或猎物的定位,减少植食性昆虫对植物的取食,从而达到间接防御的目的。植物对植食性昆虫所做出间接防御反应激发因子和信号转导途径的研究,对应用虫害诱导植物挥发物引诱害虫天敌,并进一步从植物、植食性昆虫及其天敌间三级营养关系,研究动植物协同进化机理和病虫害防治具有深远意义。本文根据国内外最新研究进展,对虫害诱导植物间接防御反应的激发因子,昆虫取食信号的转导途径及对植物间接防御相关基因的激活等方面进行了系统地综述。  相似文献   

9.
昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用   总被引:4,自引:1,他引:4  
王琛柱  钦俊德 《昆虫知识》2007,44(3):311-319
近数10年内,Ehrlich和Raven于1964年提出的协同进化理论及Jermy于1976年提出的顺序进化理论极大地促进了对昆虫与植物相互作用的研究。文章首先简要介绍有关理论,对植食性昆虫与植物关系研究的若干核心问题进行评述。主要问题包括(1)植食性昆虫如何选择寄主植物?(2)植物次生物质是否作为植物防御昆虫取食的重要屏障?(3)昆虫能否适应植物的化学防御?(4)植食性昆虫寄主范围是否是从广到专演化的?随之,作者结合对铃夜蛾Helicoverpa系统研究取得的结果,对上述问题做了进一步的论证和阐述。最后,在继承协同进化、顺序进化等理论精髓的基础上,根据当今三营养级相互作用领域的研究新进展,提出一个新的假说,即多营养级协同进化假说。该假说肯定植物次生物质在植物防御和昆虫识别寄主植物上的重要作用,同时把其他营养级并列放入交互作用的系统,特别强调第三营养级在昆虫与植物关系演化过程中的参与和寄主转移与昆虫食性专化和广化的联系。  相似文献   

10.
高程  郭良栋 《生物多样性》2013,21(4):488-498
外生菌根(ectomycorrhiza,ECM)是由土壤真菌与陆地植物根系形成的一种互惠共生体。ECM真菌从寄主植物中获取生长所需的碳源,同时促进寄主吸收氮、磷等矿物营养物质和水分。作为生态系统的重要组分,ECM真菌在生态系统的演替和多样性维持中发挥着重要的作用,因而揭示ECM真菌多样性的分布格局与维持机制是生物多样性与生态系统功能研究的热点领域之一。本文对ECM真菌多样性的最新研究进展进行了综合分析,相关研究显示,从热带到亚热带、温带森林,每种寄主植物上ECM真菌的平均物种数逐渐升高。扩散和选择过程都影响ECM真菌的分布格局,其中扩散对ECM真菌分布的影响具有空间尺度依赖性,即在全球和局域尺度上,扩散对ECM真菌分布的影响较弱,而在区域和小尺度上很强。同时,在局域尺度上,扩散对ECM真菌的分布具有寄主植物优势度依赖性,即在寄主植物不占优势的生态系统中,扩散对ECM真菌的分布有明显作用;而在寄主植物占优势的生态系统中则无影响。植物、动物、微生物和非生物因素的选择也都影响ECM真菌的分布格局,其中在温带地区所有研究均表明选择对ECM真菌的分布有影响,但是在热带地区有的研究表明选择对ECM真菌的分布有影响,而有的研究则显示无影响。植物的多样性和生产力都能影响ECM真菌的多样性,其中在温带、亚热带和热带森林中寄主植物属的多样性决定ECM真菌多样性,而植物生产力多样性假说只在一些温带的研究中得到证实。未来的研究重点应关注全球尺度,特别是在全球气候变化背景下的ECM真菌多样性的分布格局、维持机制及其生态系统功能等方面。  相似文献   

11.
The natural enemies hypothesis predicts that the abundance and diversity of antagonists such as predators and parasitoids of herbivores increases with the diversity of plants, which can lead to more effective top-down control of insect herbivores. However, although the hypothesis has received large support in agricultural systems, fewer studies have been conducted in forest ecosystems and a comprehensive synthesis of previous research is still lacking.We conducted a meta-analysis of 65 publications comparing the diversity, abundance or activity of various groups of natural enemies (including birds, bats, spiders and insect parasitoids) in pure vs. mixed forest stands. We tested the effects of forest biome, natural enemy taxon and type of study (managed vs experimental forest).We found a significant positive effect of forest tree diversity on natural enemy abundance and diversity but not on their activity. The effect of tree diversity on natural enemies was stronger towards lower latitudes but was not contingent on the natural enemy taxon level.Overall, our study contributes toward a better understanding of the “natural enemies hypothesis” in forest systems and provides new insights about the mechanisms involved. Furthermore, we outline potential avenues for strengthening forest resistance to the growing threat of herbivorous insects.  相似文献   

12.
Understanding the interactions between herbivores and natural enemies in fragmented landscapes is essential for conservation biological control. Studies including multiple enemies affecting multiple herbivores, plant damage and growth are needed. Here, we separated independent effects of (1) isolation of cherry trees from woody habitat and (2) the amount of woody habitat in the surrounding landscape (500 m buffers) on interactions between different groups of herbivores with their natural enemies and resulting changes in the growth of young cherry trees. Most predatory arthropods declined with habitat isolation, except some aphid predators (ladybeetles and hoverflies). Herbivores either increased with isolation (herbivorous beetles) or showed no significant response (aphids). In contrast, the amount of woody habitat in the landscape was not relevant for herbivore–enemy interactions at the investigated scale. Plant growth was affected by bottom-up (nutrient availability) and top-down (aphid density) forces but did not change significantly with habitat amount or isolation. We conclude that herbivores can be released from natural enemies at isolated sites, in accordance with the hypothesis that habitat connectivity improves pest control. However, each herbivore group responded differently to the landscape context and had contrasting effects on the same host plant, demonstrating the difficulty to predict landscape effects on plant growth.  相似文献   

13.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

14.
Tritrophic interactions (plant—herbivore—natural enemy) are basic components of nearly all ecosystems, and are often heavily shaped by bottom-up forces. Numerous factors influence plants’ growth, defense, reproduction, and survival. One critical factor in plant life histories and subsequent trophic levels is nitrogen (N). Because of its importance to plant productivity, N is one of the most frequently used anthropogenic fertilizers in agricultural production and can exert a variety of bottom-up effects and potentially significantly alter tritrophic interactions through various mechanisms. In this paper, the potential effects of N on tritrophic interactions are reviewed. First, in plant-herbivore interactions, N availability can alter quality of the plant (from the herbivore’s nutritional perspective) as food by various means. Second, nitrogen effects can extend directly to natural enemies through herbivores by changes in herbivore quality vis-à-vis the natural enemy, and may even provide herbivores with a defense against natural enemies. Nitrogen also may affect the plant’s indirect defenses, namely the efficacy of natural enemies that kill herbivores attacking the plant. The effects may be expressed via (1) quantitatively and/or qualitatively changing herbivore-induced plant volatiles or other plant features that are crucial for foraging and attack success of natural enemies, (2) modifying plant architecture that might affect natural enemy function, and (3) altering the quality of plant-associated food and shelter for natural enemies. These effects, and their interactive top–down and bottom-up influences, have received limited attention to date, but are of growing significance with the need for expanding global food production (with accompanying use of fertilizer amendments), the widening risks of fertilizer pollution, and the continued increase in atmospheric CO2.  相似文献   

15.
Natural enemies attracted to plants may provide those plants with protection against herbivores but may also protect neighbouring plants, that is through associational resistance. Ant attendance may be an important mechanism for the occurrence of such effects because ants can reduce the damage caused by a wide variety of herbivorous insects. Ants have been shown, in a previous field experiment, to decrease the damage caused by the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), a pest species that causes high seedling mortality in forest regeneration areas. In this study, we specifically tested whether seedlings planted close to ant‐attended seedlings experience associational resistance. We did this under laboratory conditions using the ant species Lasius niger (L.) (Hymenoptera: Formicidae). The feeding damage by pine weevils was significantly reduced on seedlings attended by ants. The neighbouring seedlings, however, did not experience associational resistance. Nevertheless, some associational effects were observed as the number of weevils recorded on both ant‐attended and neighbouring seedlings was significantly lower compared with ant‐excluded seedlings.  相似文献   

16.
An increasing body of evidence indicates that the association between different plant species may lead to a reduction in insect herbivory, i.e. associational resistance. This might be due to a top–down regulation of herbivores by increased numbers of natural enemies or to a disruptive bottom–up influence of lower host plant accessibility. In particular, the richer plant communities release more diverse plant odours that may disturb olfactory-guided host choice and mating behaviour of insect herbivores, i.e. the “semiochemical diversity hypothesis”. However, this hypothesis has been rarely tested experimentally in natural habitats, notably forest ecosystems. We tested the effects of non-host volatiles (NHV) on mate and host location by the pine processionary moth (PPM) at the scale of individual pine trees with branches of non-host tree (birch) at their base. Pheromone trap catches and the numbers of larval nests were both reduced by non-host presence under treated pine trees, confirming an associational resistance mediated by NHV. In both males and females, the antenna could detect several birch volatiles, including methyl salicylate (MeSa). MeSa inhibited the attraction of the PPM male to pheromone traps, as did bark and leaf chips from birch trees. Our test of three doses of MeSa at the habitat scale (50 m forest edges) showed that the reduction in the numbers of male PPM captured in traps and in larval nests was MeSa dose-dependent. These results show that odours released by deciduous non-host trees can reduce herbivory by a forest defoliator in conifers, providing support to the “semiochemical diversity hypothesis” as a mechanism of associational resistance.  相似文献   

17.
18.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

19.
Whether resources (bottom-up forces), natural enemies (top-down forces), or both, determine the abundance of insect herbivore populations in plant–insect herbivore–natural enemy systems remains a major issue in population ecology. Unlike recent surveys of the tritrophic literature we do not seek to quantify whether top-down or bottom-up forces predominate in any given set of experimental systems. Acknowledging the dearth of empirical synthesis we employ two contrasting literature surveys to determine whether the plant–insect herbivore–natural enemy literature is currently adequate to form a conceptual synthesis of the relative roles of top-down and bottom-up forces. The emergence of a synthesis of the relative roles of top-down and bottom-up forces in plant–insect herbivore–natural enemy systems appears to have been largely prevented by (1) the absence of appropriate empirical data; (2) failure to appreciate the merits of existing data; (3) a continued desire to emphasise either top-down or bottom-up forces to the exclusion of the other; and (4) confusion regarding which processes regulate and which influence the abundance of insect herbivores.  相似文献   

20.
Insect herbivores feeding on low-quality plants often compensate by increasing their consumption of plant tissue. This usually results in a longer developmental time leading to a higher vulnerability to natural enemies. This has been termed the slow-growth, high-mortality hypothesis. To explore how compensation may shape the species composition of herbivore and natural enemy populations, we present a mathematical model of a tri-trophic system incorporating both the nutritional quality of plants and herbivores, and the compensatory ability of herbivores and their natural enemies. Using this model we predict the abundance of herbivores and natural enemies, and some characteristics of the composition of species of insect communities along a gradient of plant nutritional quality. Specifically, we make the following predictions: 1) In the absence of natural enemies, the abundance of the juvenile herbivores increases with plant quality, and only highly compensating herbivores persist at low plant nutritional quality. 2) If natural enemies are present, the abundance of the juvenile herbivores decreases with increasing plant quality due to more effective suppression by the natural enemies. Poorly compensating herbivores increase while their highly compensating counterparts decrease with lowered plant quality. 3) When the plants have low nutritional quality, natural enemies will only persist when either very highly compensating herbivores are present or if the natural enemy itself is highly compensating. 4) The abundance of adult herbivores in a community with natural enemies can either increase or decrease with increasing plant quality depending on the compensatory abilities of herbivores and natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号