首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

2.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

3.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

4.
A variety of adhesion molecules regulate the traffic and tissue localization of lymphocytes in vivo by mediating their binding to vascular endothelial cells. The homing receptor gp90MEL-14 (gp90), also known as LECAM-1 or L-selectin, mediates the adhesion of lymphocytes to specialized high endothelial venules in lymph nodes (LN) and is the primary molecule regulating lymphocyte recirculation and homing to LN, whereas other adhesion molecules have a major role in the localization of lymphocytes in inflammatory sites. We used four-color flow cytometric analysis to examine the regulation of adhesion receptor expression on LN CD8 T cells responding to skin allografts in vivo. In normal mice, greater than 95% of LN CD8 T cells are gp90+, being either gp90+Pgp1- (Population (Pop.) 1 or gp90+Pgp-1+ (Pop.2). Allografting induces the down-regulation of gp90 and up-regulation of Pgp-1 on a subset of cells, resulting in the appearance of CD8+gp90-Pgp-1hi (Pop. 3) cells. Pop. 3 cells also express high levels of LFA-1, ICAM-1, and ICAM-2, and a subset of them are VLA-4 alpha-positive. Purified Pop. 3 cells have potent cytolytic activity directed against donor alloantigen, whereas no such activity is present in Pop. 1 or 2 cells. Correlating with this is the high granzyme activity in Pop. 3 cells. In addition, Pop. 3 lymphocytes, but not Pop. 1 or 2, secrete a large amount of IFN-gamma in response to Ag. Finally, the CD8 T cells that infiltrate sponge matrix allografts are markedly enriched for the Pop. 3 subset. These results show that, during the immune response to alloantigen in vivo, a small subset of CD8 T cells down-regulates the LN homing receptor while increasing the expression of other adhesion molecules, as they differentiate into highly active cytolytic T lymphocytes. Thus, the differential regulation of LN homing receptors and receptors for peripheral vascular endothelium provides a mechanism that would redirect the traffic of activated effector cells away from lymphoid tissue and to sites of Ag deposition, where they would participate in the inflammatory response.  相似文献   

5.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

6.
The Ta1 (CDw26) Ag distinguishes a subset of circulating T lymphocytes that is the major population proliferating to recall Ag challenge. Unlike receptors for growth factors such as IL-2 and transferrin, the Ta1 Ag is present on T cell lines and clones irrespective of cell cycle. The appearance of Ta1 on T cells that respond to recall Ag allowed us to investigate activation requirements that may be associated with T cell immune memory. Ta1+ peripheral blood T cells were induced to proliferate by mAb recognizing either the invariant chains of the TCR, or by pairs of mitogenic antibodies directed to the CD2 molecule. In contrast, Ta1- cells were not stimulated by these antibodies. In addition, Ta1-cells did not proliferate maximally after addition of the phorbol ester PMA in combination with the calcium ionophore Ionomycin, suggesting that the intracellular targets of these agents may not be fully active. Anti-CD3-induced elevation of intracellular calcium levels was equivalent in the two subpopulations, suggesting that calcium mobilization mechanisms were intact. In contrast, PMA-induced phosphorylation of TCR CD3 chains was significantly greater in Ta1+ cells as compared to Ta1- T cells. Taken together, our results indicate that Ta1 expression, which is associated with T cell activation and memory, may be causally related to TCR and CD2-mediated activation mechanisms. The PMA inducible TCR phosphorylation in Ta1+ memory cells associated with their increased ability to proliferate after CD3/TCR or CD2 stimulation suggests that intracellular phosphorylation events may be causally associated with T cell immune memory.  相似文献   

7.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

8.
Ly6C is a hemopoietic cell differentiation Ag found on a subset of CD8 T cells in the periphery. It is involved in target cell killing by CTLs, augments TCR-mediated activation of IL-2 and IFN-gamma production in CD8 T cells, and regulates CD8 T cell homing in vivo. In this study, we show that cross-linking of Ly6C causes clustering of LFA-1 (CD11a/CD18) on the surface of CD8 T cells via a mechanism dependent on reorganization of actin cytoskeleton and intracellular protease, calpain, but not the phosphatidylinositol 3-kinase pathway. In the capillary flow-adhesion assay, Ly6C cross-linking significantly augments lymphocyte adhesion to endothelium, and this is inhibited by an Ab that blocks LFA-1 function. Furthermore, upon in vitro cross-linking and during in vivo homing into lymph nodes, Ly6C is transiently lost from cell surface but becomes re-expressed on lymph node-resident CD8 T cells. The abilities of Ly6C to induce LFA-1 clustering and to be re-expressed after signaling-associated down-regulation may be important in regulating the homing of CD8 T cells into lymph nodes and in subsequent steps of CD8 T cell activation and effector function that again involve LFA-1.  相似文献   

9.
The integrins can activate signaling pathways, but the final downstream outcome of these pathways is often unclear. This study analyzes the consequences of signaling events initiated by the interaction of the leukocyte integrin LFA-1 with its ligand, dimeric ICAM-1. We show that the active form of LFA-1 regulates its own function on primary human T cells by directing the remodeling of the F-actin cytoskeleton to strengthen T cell adhesion to ICAM-1. Confocal microscopy revealed that both F-actin bundling and overall levels of F-actin are increased in the ICAM-1-adhering T cells. This increase in F-actin levels and change in F-actin distribution was quantitated for large numbers of T cells using the technique of laser scanning cytometry and was found to be significant. The study went on to show that clustering of conformationally altered LFA-1 is essential for the changes in F-actin, and a model is proposed in which clustered, high-avidity T cell LFA-1, interacting with multivalent ICAM-1, causes LFA-1 signaling, which results in F-actin polymerization and higher-order F-actin bundling. The findings demonstrate that LFA-1 acts not only as an adhesion receptor but also as a signaling receptor by actively initiating the F-actin reorganization that is essential for many T cell-dependent processes.  相似文献   

10.
Human cytotoxic T lymphocyte clones form conjugates with both antigen-positive and antigen-negative lymphoblastoid cells. Conjugates with antigen-negative targets form as rapidly, and are almost as frequent, as those with antigen-positive targets; both types are strong. Monoclonal antibodies against lymphocyte function-associated antigen (LFA)-1, CD2, and LFA-3 (or their Fab fragments) each consistently inhibit conjugate formation, but only partially; mixes of alpha LFA-1 with either CD2 monoclonal antibodies or alpha LFA-3 cause complete inhibition. Our previous studies have demonstrated two distinct pathways of antigen-independent conjugate (AIC) formation, one involving LFA-1 and the other involving CD2/LFA-3. The present studies showing supra-additive inhibition with mixes of Fab indicate that at least a major fraction of the conjugates involve T cells which utilize both pathways. Preincubation studies (and restricted expression for CD2) demonstrate that in the CD2/LFA-3 pathway, CD2 is critical on the effector and LFA-3 on the target and that in the LFA-1 pathway, LFA-1 is critical on the effector. Analysis of conjugate formation by primary allosensitized T cells confirms the critical findings made with T cell clones. Among a panel of antigen-negative "target" cell lines tested, there is wide variation in the number of AIC formed with cytotoxic T lymphocyte clones; this variation correlates partially with differences in level of expression of LFA-3. Both pathways of adhesion are utilized in AIC formation with all five targets tested, but there was variation between targets in the relative contribution by each pathway. Studies of inhibition of lysis (rather than conjugate formation) support the relevance of the two-pathway model to the lytic process as a whole. These studies demonstrate the general involvement of two pathways of adhesion in human T cell interactions: one involving T cell LFA-1 and the other involving T cell CD2 binding to target cell LFA-3.  相似文献   

11.
ICAMs are ligands for LFA-1, a major integrin of mononuclear cells involved in the immune and inflammatory processes. We previously showed that endothelial cell specific molecule-1 (ESM-1) is a proteoglycan secreted by endothelial cells under the control of inflammatory cytokines. Here, we demonstrate that ESM-1 binds directly to LFA-1 onto the cell surface of human blood lymphocytes, monocytes, and Jurkat cells. The binding of ESM-1 was equally dependent on Ca(2+), Mg(2+), or Mn(2+) divalent ions, which are specific, saturable, and sensitive to temperature. An anti-CD11a mAb or PMA induced a transient increase in binding, peaking 5 min after activation. Direct binding of ESM-1 to LFA-1 integrin was demonstrated by specific coimmunoprecipitation by CD11a and CD18 mAbs. A cell-free system using a Biacore biosensor confirmed that ESM-1 and LFA-1 dynamically interacted in real time with high affinity (K(d) = 18.7 nM). ESM-1 consistently inhibited the specific binding of soluble ICAM-1 to Jurkat cells in a dose-dependent manner. These results suggest that ESM-1 and ICAM-1 interact with LFA-1 on binding sites very close to but distinct from the I domain of CD11a. Through this mechanism, ESM-1 could be implicated in the regulation of the LFA-1/ICAM-1 pathway and may therefore influence both the recruitment of circulating lymphocytes to inflammatory sites and LFA-1-dependent leukocyte adhesion and activation.  相似文献   

12.
The mechanism by which osteoblasts (OB) interact and modulate the phenotype and proliferation of T lymphocytes during inflammation is not well known. The effects of two regulatory cytokines, TNFalpha and IFNgamma, on the expression of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and the CXCR3 ligands (CXCL9, CXCL10, CXCL11), were assessed in a primary culture of human OB by real-time PCR, flow cytometry, and immunohistochemistry. In addition, we functionally evaluated the recruitment and proliferation of T lymphocytes grown with resting or stimulated OB. According to the present data IFNgamma, either alone or in combination with TNFalpha, significantly up-regulates the expression of CD54 and CD106 and induces the expression and release of CXCL9, CXCL10, CXCL11 in OB. The supernatant of TNFalpha- and IFNgamma-activated OB induces the recruitment of T lymphocytes more significantly than stimulation by CXCR3 ligands. T lymphocyte proliferation is significantly enhanced by direct contact with TNFalpha- and IFNgamma-activated OB or by incubation with the supernatant of TNFalpha- and IFNgamma-activated OB. Blocking experiments with anti-CD11a, anti-CD49d, anti-CXCR3, and Bordetella pertussis toxin demonstrate that adhesion molecules and the CXCR3 chemokine receptor play a key role in the proliferation of T lymphocytes. The present study demonstrates the involvement of adhesion molecules (CD11a and CD49d) and chemokine receptor (CXCR3) in the mechanism by which OB recruit, interact, and modulate T lymphocyte proliferation under inflammatory conditions.  相似文献   

13.
The role of platelets in T-lymphocytes adhesion is not clear yet. Herpesvirus saimiri (HVS)-infected CD4(+) T-lymphocytes were placed into polystyrene plates pre-coated with fibronectin. The adherent T-cells were enumerated by image analysis. Under static condition, 38+/-10cells/mm(2) adhered and addition of gel-filtered platelets (GFP) and PMA enhanced cell adhesion 4.3- and 4.1-fold. Using PMA plus GFP 11.9-fold enhancement in cell adhesion was achieved. In contrast, under flow (200s(-1)), neither basal adhesion nor following separate addition of PMA or GFP was observed, whereas combined addition of PMA and GFP induced noticeable adhesion (34cells/mm(2)). The adhesion was inhibited by blockade of alpha(5)-integrin (CD49e, 87%), beta(2)-integrin (CD18, 78%), CD40L (60%), PSGL-1 (CD162, 60%), and CD40L plus PSGL-1 (83%). Thus, activated platelets promote activated T-cell adhesion to fibronectin under flow via integrins (alpha(5)beta(1), and alpha(L)beta(2)), CD40-CD40L and P-selectin-PSGL-1 mediated interactions.  相似文献   

14.
15.
Although primary antiviral CD8+ cytotoxic T lymphocytes (CTL) can be induced in mice depleted of CD4+ T cells, the role of CD4+ T lymphocytes in the generation and maintenance of antiviral memory CTL is uncertain. This question, and the consequences upon vaccine-mediated protection, were investigated in transgenic CD4 knockout (CD4ko) mice, which lack CD4+ T lymphocytes. Infection of immunocompetent C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV), or with recombinant vaccinia viruses bearing appropriate LCMV sequences, induces long-lasting protective immunity, mediated mainly by antiviral CD8+ CTL. Here we report two important findings. First, LCMV-specific CD8+ memory CTL are maintained at considerably lower levels in CD4ko mice than in normal C57BL/6J mice; we demonstrate a reduction in precursor CTL evident as soon as 30 days postimmunization and declining, by day 120, to levels 1 to 2 log units below those in normal mice. Thus, CD4+ T cells appear to be important to the generation and maintenance of their CD8+ counterparts. Second, this reduction has an important biological consequence; compared with immunocompetent mice, CD4ko mice immunized with vaccinia virus recombinants expressing nucleoprotein or glycoprotein of LCMV are less effectively protected from subsequent LCMV challenge. Thus, this study underscores the potential importance of CD4+ T lymphocytes in generation of appropriate levels of CD(8+)-cell-mediated immunoprotective memory and has implications for vaccine efficacy in individuals with immune defects in which CD4 levels may be reduced, such as AIDS.  相似文献   

16.
Exposure of human KC to IFN-gamma increases their susceptibility to lysis by CTL. The mechanism of this enhanced lysis was investigated by analyzing interactions of IFN-gamma-treated and nontreated cultured KC with allogeneic class I-specific CTL clones. rIFN-gamma treatment augmented KC lysis in a time- and dose-dependent manner. Increased lysis of IFN-KC was detected after only 2 h of IFN-gamma treatment and was maximal by 12 h. Enhanced lysis of IFN-KC was Ag-specific, inasmuch as nonantigenic IFN-KC were not lysed either directly or as bystanders during the lysis of antigenic KC. Parallel immunofluorescence and cytotoxicity assays of KC treated with IFN-gamma for various intervals revealed a direct correlation between the degree of increased KC lysis and levels of cell surface ICAM-1 (CD54), but not of specific alloantigen or beta 2-microglobulin. Lysis of nontreated KC was blocked by mAb against class I or CD3, but not by mAb against ICAM-1 or LFA-1. In contrast, lysis of IFN-KC was partially inhibited by anti-ICAM-1 or anti-LFA-1 mAb, but resisted inhibition by anti-class I mAb except in the presence of anti-ICAM-1. These results indicate that both ICAM-1/LFA-1 and Ag/CD3-TcR interactions are important for Ag-specific lysis of IFN-KC, whereas lysis of nontreated KC depends on Ag/CD3-TcR but not ICAM-1/LFA-1 interactions. Equivalent inhibition of IFN-KC lysis by mAb against ICAM-1 or LFA-1 suggests that ICAM-1 is the only LFA-1 ligand involved in enhanced IFN-KC lysis. Furthermore, enhanced CTL lysis of KC after short-term IFN-gamma treatment can be explained solely on the basis of ICAM-1 induction, because all of the increase in specific lysis associated with IFN-gamma treatment could be blocked by mAb that block ICAM-1/LFA-1 interactions.  相似文献   

17.
The determinants of the prevalence of CD8(+) T cells in the inflamed myocardium of Trypanosoma cruzi-infected patients and experimental animals are undefined. Using C3H/He mice infected with the Colombiana strain of T. cruzi, we found that the distribution of CD4(+)/CD8(-) and CD4(-)/CD8(+) T cells in the myocardium mirrors the frequency of cells expressing the CD62L(Low)LFA-1(High)VLA-4(High) activation phenotype among CD4(+)/CD8(-) and CD4(-)/CD8(+ )peripheral blood T cells. Consistently, vascular cell adhesion molecule-1-positive endothelial cells and a fine fibronectin network surrounding VLA-4(+) mononuclear cells were found in the inflamed myocardium. Further, interferon gamma (IFN-gamma) and IFN-gamma-induced chemokines (RANTES, MIG and CRG-2/IP-10), as well as JE/MCP-1 and MIP1-alpha, were found to be the dominant cytokines expressed in situ during acute and chronic myocarditis elicited by T. cruzi. In contrast, interleukin 4 mRNA was only detected during the chronic phase. Altogether, the results indicate that the distribution of T-cell subsets in the myocardium of T. cruzi-infected mice reflects the particular profile of adhesion molecules acquired by most peripheral CD8(+) T lymphocytes and point to the possibility that multiple IFN-gamma-inducible molecules present in the inflamed tissue contribute to the establishment and maintenance of T. cruzi-induced myocarditis.  相似文献   

18.
D Redelman 《Cytometry》1987,8(2):170-183
The E-rosette receptor (CD2, T11) is a differentiation antigen expressed on immature and mature human T lymphocytes. Activation of T cells from human peripheral blood with phytohemagglutinin (PHA) or with monoclonal antibody to the CD3-Ti complex (anti-Leu-4) caused the expression of CD2 to increase 10- to 20-fold. Dual parameter correlated analyses with antibody to the T cell growth factor (TCGF) receptor (anti-Tac) and anti-CD2 antibody demonstrated that the increase in CD2 expression occurred at the same time and on the same cells that expressed the TCGF receptor after stimulation with PHA. The increased expression of CD2 and the initial expression of Tac were totally inhibited by cycloheximide, but were not affected by sufficient actinomycin-D to block the T cell proliferative response. The expression of CD2 was compared with the expression of CD4 and CD8, i.e., T cell differentiation antigens on cytotoxic/suppressor or helper T cells, respectively. Although virtually all of the small percentage of freshly isolated Tac+ peripheral blood cells belonged to the CD4+, CD8- subset, both CD4+ and CD8+ T cells were equivalently activated by PHA to express Tac. By 20-30 hr after activation, the expression of CD4 or CD8 was initially decreased 10-50%. Subsequently, the expression of CD4 and CD8 returned to the levels on resting T cells but did not increase further. Therefore, the increase in CD2 expression does not reflect a universal property of cell surface antigens on activated T lymphocytes.  相似文献   

19.
P-selectin (CD62) is a Ca(2+)-dependent lectin expressed on activated platelets and endothelium. Although P-selectin is known to function as a receptor for myeloid cells, previous studies indicated that P-selectin also bound to a subset of lymphocytes. Using a multi-color immunofluorescence assay we found that purified P-selectin bound to 12.2 +/- 4.1% of peripheral blood lymphocytes and that P-selectin could mediate adhesion of activated platelets to lymphocytes. A subpopulation of CD4+, CD8+, and CD16+ lymphocytes bound P-selectin. There was a marked preference for P-selectin binding to memory cells (CD45RO+) in both the CD4+ and CD8+ populations. Binding to all cell types was Ca(2+)-dependent and blocked by pretreatment of the cells with sialidase. These data suggest that P-selectin may play a role in the recruitment of specific lymphocyte populations to sites of inflammation.  相似文献   

20.
We report that a subpopulation (10%) of the Mac-1 (CD1 1b/CD18) molecules on activated neutrophils mediates adhesion to ICAM-1 and fibrinogen. We describe a novel mAb (CBRM1/5) that binds to an activation-specific neoepitope on a subset of Mac-1 molecules on neutrophils and monocytes after stimulation with chemoattractants or phorobol esters but does not recognize Mac-1 on resting myeloid cells. CBRM1/5 immunoprecipitates a subpopulation of Mac-1 molecules from detergent lysates of neutrophils, binds to immunoaffinity-purified Mac- 1, and localizes to the I domain on the alpha chain of Mac-1. Because CBRM1/5 recognizes a fraction of Mac-1 on activated neutrophils, but still blocks Mac-1-dependent adhesion to fibrinogen and ICAM-1, we suggest that only a small subset of Mac-1 molecules is competent to mediate adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号