首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosinase activities and dopachrome conversion activity were evaluated in extracts made from skins of 6-day-old mice that were mutant at the agouti and albino loci. Dopa oxidase (DO) activity of tyrosinase in fully pigmented (C/C) mice is reduced in extracts made from skins of yellow 6-day-old mice as compared to those of black mice. Dopachrome conversion (DC) activity is absent from skin extracts of normal yellow mice and is present in normal black mice. DC activity is a characteristic of a separate enzyme which has been called dopachrome conversion factor or dopachrome oxidoreductase. We measured the dopa oxidase activity and dopachrome conversion activity in skin extracts of yellow mice and black mice that were mutant at the albino (C) locus. Extracts made from extreme-dilution (ce/ce) mice do not have DO activity. Those from yellow extreme-dilution mice do not have DC activity, while those from black, extreme-dilution mice do. The DO and DC activities that characterize skin extracts made from platinum (cp/cp) yellow mice are similar to those of platinum black mice. These observations suggest possible mechanisms by which the functions controlled by the agouti and albino loci interact to control melanogenesis.  相似文献   

2.
Lysyl oxidase activity was measured in the lungs and from cultured fibroblasts of Blotchy mice. A marked decrease in lysyl oxidase activity was observed in lungs of affected mice as compared to normal litter mates. Fibroblasts cultured from Blotchy mice were also deficient in lysyl oxidase, producing less than half of normal enzyme levels. Normal and Blotchy fibroblasts which had been maintained in culture for several months and had undergone spontaneous transformation, continued to show the same magnitude of difference in lysyl oxidase levels. The data suggest that the deficiency of lysyl oxidase is inherent in Blotchy fibroblasts and support the idea that the deficiency of this enzyme is the metabolic lesion that leads to the connective tissue defects observed in these animals.  相似文献   

3.
Changes in collagen cross-linking and lysyl oxidase by estrogen.   总被引:3,自引:0,他引:3  
Dermal collagen solubility and lysyl oxidase activity of bones were measured in DDD mice of advancing age. Insoluble fractions of the dermal collagen increased more rapidly in females than in males after 5 weeks of age. Activity of the lysyl oxidase extracted from bones was higher in females than in males after 4 weeks of age. After sexual maturation, such sex differences were always observed in skin as well as in bone tissue. In other experimental animals, dermal collagen solubility was markedly decreased by estrogen treatment and lysyl oxidase was remarkably activated by estrogen in both skin and bone. Thus it is clear that estrogen stimulates the enzyme activity and accelerates the maturation of collagen and elastin in extracellular space.  相似文献   

4.
5.
The activity of two copper-dependent enzymes, cytochrome c oxidase and copper, zinc-superoxide dismutase, was determined in six tissues of age-matched (13-day-old) copper-deficient mutant and normal mice. In the two mutants 'brindled' and 'blotchy', brain, heart and skeletal muscle had significant enzyme deficiencies. Cytochrome c oxidase was more severely affected than was superoxide dismutase. In these three tissues the degree of deficiency could be correlated with decreased copper concentration; however, enzyme activity was normal in liver, kidney and lung, despite abnormal copper concentrations in these tissues. In nutritionally copper-deficient mice, all six tissues showed decreased enzyme activity, which was most marked in brain, heart and skeletal muscle, the tissues which showed enzyme deficiencies in the mutants. Analysis in vitro of cytochrome c oxidase (temperature coefficient = 2) at a single temperature was found to underestimate the deficiency of this enzyme in hypothermic copper-deficient animals. Cytochrome c oxidase deficiency may therefore be sufficiently severe in vivo to account for the clinical manifestations of copper deficiency. An injection of copper (50 micrograms of Cu+) at 7 days increased cytochrome c oxidase activity by 13 days in all deficient tissues of brindled mice, and in brain and heart from blotchy mice. However, skeletal-muscle cytochrome c oxidase in blotchy mutants did not respond to copper injection. Cytochrome c oxidase activity increased to normal in all tissues of nutritionally copper-deficient mice after copper injection, except in the liver. Hepatic enzyme activity remained severely deficient despite a liver copper concentration three times that found in copper-replete controls. Superoxide dismutase activity did not increase with treatment in either mutant, but its activity was higher than control levels in nutritionally deficient mice after injection. This difference is probably due to sequestration of copper in mutant tissue such as kidney, but a defect in the copper transport pathway to superoxide dismutase cannot be excluded.  相似文献   

6.
Summary

Iron overload is known to occur in West European and American populations due to the consumption of an iron-rich diet. There are also genetic disorders which lead to body iron overload. It has been shown that iron overload predisposes humans to an increased risk of cancer. In experimental animals, iron overload is known to enhance intestinal, colon, hepatic, pulmonary and mammary carcinogenesis. However, the mechanism by which iron overload enhances chemically-induced carcinogenesis is not known. In this study, we show that iron overload acts as a mild tumor promoter in mouse skin. Female albino swiss mice were given 1 mg iron/mouse parenterally for 2 weeks to induce iron overload. These animals showed a three-fold increase in cutaneous iron concentration as compared to normal mice. Tumors were initiated by topically applying 7,12-dimethylbenz(a)anthracene (DMBA). Appearance of the first tumor (latency period), percent tumor incidence and number of tumors/mouse were recorded. When compared to the control group, iron overload mice showed an increased incidence of tumors, from 25%-55% by week 20, and tumors appeared 4 weeks earlier. The number of tumors per mouse was four-fold higher in the iron overload group. The induction of cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation in cutaneous DNA were higher in iron overload groups as compared to normal control animals. Similar to other oxidant tumor promoters, iron overload enhanced cutaneous lipid peroxidation and xanthine oxidase activity and decreased catalase activity. Our results indicate that iron overload exerts a mild tumor promoting activity in mouse skin. Our data also show that oxidative stress generated by iron overload plays an important role in the augmentation of cutaneous tumorigenesis. These data may also have implications for the enhanced risk of cancer-induction following UVB exposure of human populations with iron overload.  相似文献   

7.
We measured histamine concentration and its metabolizing enzymes in the skin of MRL/Mp-lpr/lpr (MRL/l) and BXSB mice to clarify the contribution of histamine metabolism to the mechanisms of the development of lupus dermatoses. The concentration of histamine seemed to differ with the mouse strain. The activity of histamine-N-methyltransferase (HMT), one of two major metabolizing enzymes, was significantly lower in the tail and back skin of MRL/l mice at the age of 5 months than in the control MRL/Mp-+/+(MRL/n) mice, although there were no characteristic differences among several mouse strains of 1 mo of age. In the back skin of MRL/l mice, an age-dependent decrease of HMT activity was observed along with a corresponding decrease in histamine concentration, whereas an age-dependent increase of both HMT activity and histamine concentration was demonstrated in BXSB mice and other control mouse strains. Autoimmune-prone male BXSB mice and non-autoimmune female BXSB mice at 5 mo of age showed similar HMT activity. Corticosteroid treatment restored HMT activity in the skin of MRL/l mice but not in MRL/n mice. In addition, the change in HMT activity in MRL/l mice treated with corticosteroid appeared earlier than changes in clinicopathological examinations including skin eruptions, dermatopathology and proteinuria. Diamine oxidase (DAO) activity, another major metabolizing enzyme, was not detected in the skin of any autoimmune or control mouse strains. These findings suggest that the low activity of HMT in the skin of MRL/l mice plays a significant pathological role in the development of spontaneous lupus-like eruption. In other mouse strains, it is assumed that HMT activity is regulated by genetic factors.  相似文献   

8.
Heart failure is a clinical syndrome associated with elevated levels of oxygen-derived free radicals. Xanthine oxidase activity is believed to be one source of reactive oxygen species in the failing heart. Interventions designed to reduce oxidative stress are believed to have significant therapeutic potential in heart failure. This study tested the hypothesis that xanthine oxidase activity would be elevated in a mouse model of dilated cardiomyopathy and evaluated the effect of chronic oral allopurinol, an inhibitor of xanthine oxidase, on contractility and progressive ventricular dilation in these mice. Nontransgenic and transgenic mice containing a troponin I truncation were treated with oral allopurinol from 2-4 mo of age. Myocardial xanthine oxidase activity was threefold higher in untreated transgenic mice compared with nontransgenic mice. Analyses of myofilament proteins for modification of carbonyl groups demonstrated myofibrillar protein damage in untreated transgenic mice. Treatment with allopurinol for 2 mo suppressed xanthine oxidase activity and myofibrillar protein oxidation. Allopurinol treatment also alleviated ventricular dilation and preserved shortening fraction in the transgenic animals. In addition, cardiac muscle twitch tension was preserved to 70% of nontransgenic levels in allopurinol-treated transgenic mice, a significant improvement over untreated transgenic mice. These findings indicate that chronic inhibition of xanthine oxidase can alter the progression of heart failure in dilated cardiomyopathy.  相似文献   

9.
A wide range of human disorders involves inappropriate regulation of NF-kappaB, including cancers and numerous inflammatory conditions. Toward our goal to define mechanisms through which NF-kappaB leads to the development of disease, we have developed transgenic mice that express luciferase under the control of NF-kappaB, enabling real-time in vivo imaging of NF-kappaB activity in intact animals. We show that in the absence of extrinsic stimulation, strong luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with TNF-alpha, IL-1alpha, or LPS increased the luminescence in a tissue-specific manner, with the strongest activity observed in skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue displayed less intense activities. Also, exposure of skin to a low dose of UV radiation increased luminescence in the exposed areas. Furthermore, induction of chronic inflammation resembling rheumatoid arthritis produced strong NF-kappaB activity in the affected joints, as revealed by in vivo imaging. Thus, we have developed a versatile model for monitoring NF-kappaB activation in vivo.  相似文献   

10.
Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r?=?0.382, P?<?0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.  相似文献   

11.
Saleem M  Alam A  Sultana S 《Life sciences》2001,68(16):1913-1921
Ferula (a genus of many species) commonly known as asafoetida is used as a flavoring agent in food and is used as a traditional medicine for many diseases in many parts of world. In the current investigation, we report the antioxidant and anticarcinogenic potential of asafoetida (Ferula narthex) in swiss albino mice. A single dose of TPA (20 nmol/0.2 ml acetone/animal), a known tumor promoter decreased the cellular antioxidant level significantly (p<0.01) when applied topically to mice skin. It also induced the ODC activity, rate of DNA synthesis, hydrogen peroxide level, xanthine oxidase activity and protein carbonyl content in mice skin significantly (p<0.01). These events are early biomarkers of carcinogenesis. However, the pretreatment of animals with asafoetida (300, 400 and 500 microg/200 microl acetone/animal) caused the reversal of all events significantly (p<0.01). The pretreament of animals with asafoetida recovered the antioxidant level and reversed the induced ODC activity and DNA synthesis significantly (p<0.01). We conclude that asafoetida is a potent antioxidant and can afford protection against free radical mediated diseases such as carcinogenesis.  相似文献   

12.
A wide range of environmental stress and human disorders involves inappropriate regulation of NF-kappaB, including cancers and numerous inflammatory conditions. We have developed transgenic mice that express luciferase under the control of NF-kappaB, enabling real-time non-invasive imaging of NF-kappaB activity in intact animals. We show that, in the absence of stimulation, strong, intrinsic luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with stressors, such as TNF-alpha, IL-1alpha, or lipopolysaccharide (LPS) increases the luminescence in a tissue-specific manner, with the strongest activity observable in the skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue exhibit less intense activities. Exposure of the skin to a low dose of UV-B radiation increases luminescence in the exposed areas. In ocular experiments, LPS- and TNF-alpha injected NF-kappaB-luciferase transgenic mice exhibit a 20-40-fold increase in lens NF-kappaB activity, similar to other LPS- and TNF-alpha-responsive organs. Peak NF-kappaB activity occurs 6h after injection of TNF-alpha and 12h after injection of LPS. Peak activities occur, respectively, 3 and 6h later than that in other tissues. Mice exposed to 360J/m(2) of UV-B exhibit a 16-fold increase in NF-kappaB activity 6h after exposure, characteristically similar to TNF-alpha-exposed mice. Thus, in NF-kappaB-luciferase transgenic mice, NF-kappaB activity also occurs in lens epithelial tissue and is activated when the intact mouse is exposed to classical stressors. Furthermore, as revealed by real-time non-invasive imaging, induction of chronic inflammation resembling rheumatoid arthritis produces strong NF-kappaB activity in the affected joints. Finally, we have used the model to demonstrate NF-kappaB regulation by manipulating the Vitamin A status in mice. NF-kappaB activity is elevated in mice fed a Vitamin A deficient (VAD) diet, and suppressed by surplus doses of retinoic acid (RA). We thus demonstrate the development and use of a versatile model for monitoring NF-kappaB activation both in tissue homogenates and in intact animals after the use of classical activators, during disease progression and after dietary intervention.  相似文献   

13.
Over a period of ten months, five mice submitted to our service (the Pathology Section of the Veterinary Resources Program, Office of Research Services at the National Institutes of Health, Bethesda, Md.) were diagnosed with disseminated trichosporonosis. These mice had pyogranulomatous inflammation in multiple organs, including lung, liver, lymph nodes, salivary gland, and skin. Fungal elements in many of the lesions were identified, using special histochemical stains, and Trichosporon beigelii was obtained by use of culture of specimens at affected sites. This saprophytic fungus has caused disseminated disease in immunosuppressed humans. However, despite widespread use of immunosuppressed rodents in research, to the authors' knowledge, this organism had not previously been reported to cause spontaneous disseminated disease in laboratory mice. All affected mice had a genetically engineered defect in p47(phox), a critical component of the nicotinamide dinucleotide phosphate (NADPH) oxidase, the enzyme responsible for generating the phagocyte oxidative burst. These animals are used as a murine model of human chronic granulomatous disease. We discuss the lesions, differential diagnosis, identification of the organism, and the role of NADPH oxidase in protecting against disseminated trichosporonosis.  相似文献   

14.
  • 1.1. The hepatic d-aspartate oxidase activity was found to be higher in female ddY and ICR mice than in their male counterparts. On the contrary, the free d-aspartate content in the liver was lower in female mice than in male mice, suggesting that d-aspartate is actually metabolized by d-aspartate oxidase in vivo.
  • 2.2. Oral administration of d-aspartate to the animals increased the hepatic d-aspartate oxidase activity 2–3 fold in both genders without any significant difference in the rate of the increase between the genders.
  • 3.3. Several peroxisomal enzyme activities other than d-aspartate oxidase examined were not affected by this treatment.
  • 4.4. Experiments in vitro suggested that the increase in the d-aspartate activity might be explained in part by stabilization of the enzyme by d-aspartate.
  • 5.5. The administration of clofibrate, a peroxisome proliferator, to male mice, increased the hepatic d-aspartate oxidase activity with a significant simultaneous decrease of d-aspartate content in the liver, in agreement with a possible role of the enzyme n vivo.
  • 6.6. On the other hand, the administration of clofibrate or dehydroepiandrosterone to female mice decreased the d-aspartate oxidase activity.
  • 7.7. The peroxisome proliferators were suggested to act to eliminate the gender difference of hepatic d-aspartate oxidase activity in mice.
  相似文献   

15.
The compartmentalization of catalase, fatty acyl-CoA oxidase and urate oxidase was examined in the livers of mice, rats and guinea pigs, using the technique of digitonin extraction in order to avoid the trauma associated with centrifugation procedures. The results are interpreted as indicating that an appreciable proportion of catalase activity occurs in the cytoplasmic compartment of these cells. Following treatment of the animals with clofibrate, the specific activity in both peroxisomal and cytoplasmic compartments was increased, with a higher proportion of cytoplasmic catalase being evident in mice. The results for catalase were compared with those for fatty acyl-CoA oxidase and urate oxidase both of which were indicated as showing a closer association with the peroxisomal compartment than was the case for catalase. These data have been discussed in relation to their significance on present understanding of peroxisomal structure and function.  相似文献   

16.
The adaptive immune system plays an important role in host defense against invading micro-organisms. Yet, mice deficient in T- and B-cells are surprisingly healthy and develop few spontaneous infections when raised under specific pathogen-free conditions (SPF). The objective of this study was to ascertain what role phagocyte-associated NADPH oxidase or myeloperoxidase (MPO) plays in host defense in mice lacking both T- and B-cells. To do this, we generated lymphopenic mice deficient in either NADPH oxidase or MPO by crossing gp91(phox)-deficient (gp91 ko) or MPO ko mice with mice deficient in recombinase activating gene-1 (RAG ko). We found that neither gp91 ko, MPO ko mice nor lymphocyte-deficient RAG ko mice developed spontaneous infections when raised under SPF conditions and all mice had life spans similar to wild-type (WT) animals. In contrast, gp91xRAG double-deficient (DKO) but not MPOxRAG DKO mice developed spontaneous multi-organ bacterial and fungal infections early in life and lived only a few months. Infections in the gp91xRAG DKO mice were characterized by granulomatous inflammation of the skin, liver, heart, brain, kidney, and lung. Addition of antibiotics to the drinking water attenuated the spontaneous infections and increased survival of the mice. Oyster glycogen-elicited polymorphonuclear neutrophils (PMNs) and macrophages obtained from gp91 ko and gp91xRAG DKO mice had no detectable NADPH oxidase activity whereas WT, RAG ko, and MPOxRAG DKO PMNs and macrophages produced large and similar amounts of superoxide in response to phorbol myristate acetate. The enhanced mortality of the gp91xRAG DKO mice was not due to defects in inflammatory cell recruitment or NO synthase activity (iNOS) as total numbers of elicited PMNs and macrophages as well as PMN- and macrophage-derived production of nitric oxide-derived metabolites in these mice were similar and not reduced when compared to that of WT mice. Taken together, our data suggest that that NADPH oxidase but not MPO (nor iNOS) is required for host defense in lymphopenic mice and that lymphocytes and NADPH oxidase may compensate for each other's deficiency in providing resistance to spontaneous bacterial infections.  相似文献   

17.
Peroxisome proliferators are a group of non-genotoxic hepatic carcinogens which have been proposed to act by increasing oxidative damage in the liver. To test this hypothesis, we have produced a transgenic mouse line that has elevated catalase activity specifically in the liver. In this study, we have examined if catalase overexpression influences the induction of lipid peroxidation or oxidative DNA damage, two mechanisms which have been hypothesized to be important in the carcinogenesis by peroxisome proliferators. Transgenic mice or non-transgenic litter mates were fed either 0.01% ciprofibrate or a control diet for 21 days. The activities of fatty acyl CoA oxidase and lauric acid hydroxylase were not significantly affected by catalase overexpression, although the ratio of fatty acyl CoA oxidase to catalase was significantly decreased in transgenic animals. Hepatic lipid peroxidation was estimated by quantifying the concentrations of malondialdehyde and conjugated dienes. Ciprofibrate treatment did not affect either endpoint, but catalase overexpression increased the concentrations of malondialdehyde (in untreated mice only) and conjugated dienes (in both untreated and ciprofibrate-fed mice). Oxidative DNA damage was estimated by quantifying 8-hydroxydeoxyguanosine (8-OHdG) by high-performance liquid chromatography/electrochemical detection. Ciprofibrate treatment significantly increased hepatic 8-OHdG concentrations, in agreement with several previous studies, but catalase overexpression did not significantly affect them, although 8-OHdG concentrations were decreased 50% in untreated mice. These results imply that the metabolism of hydrogen peroxide by catalase is not an important factor in the development of hepatic lipid peroxidation. The decrease in hepatic 8-OHdG in untreated transgenic mice and the increase seen after ciprofibrate administration imply that hydrogen peroxide is important in the formation of 8-OHdG. While the lack of decreased 8-OHdG levels in ciprofibrate-treated transgenic mice does not support this conclusion, it is possible that catalase levels were not sufficiently high to affect this endpoint. Transgenic mice with higher hepatic catalase activities may be required to resolve this issue.  相似文献   

18.
Cutaneous and mucous epithelia of various organs of laboratory rodents were analysed histochemically for reactive oxygen species (ROS)-generating oxidases using cerium methods. High activities of xanthine oxidase and also superoxide dismutase were present in orthokeratotic stratified squamous epithelia of skin, lips, esophagus and forestomach and parakeratotic keratinizing stratified epithelia of vagina, tongue and penis. Moreover, activity was found in simple epithelium of the uterus and intestine of rats, mice and guinea-pigs. Moderate activities of monoamine oxidase and D-amino acid oxidase were only seen in enterocytes of large and small intestine, whereas alpha-hydroxy acid oxidase could not be detected at all. With the use of specific inhibitors for superoxide anions-producing xanthine oxidase and H2O2-generating superoxide dismutase it was shown that epithelial cells of all studied external and internal surface epithelia contain a highly effective xanthine oxidase-superoxide dismutase system. It is hypothesized that this system might have a general microbicidal function and might play a special role in tumor promotion of the skin.  相似文献   

19.
EFFECT OF COPPER STATUS ON BRAIN NEUROTRANSMITTER METABOLISM IN THE LAMB   总被引:1,自引:0,他引:1  
Abstract— Ataxic and non-ataxic lambs reared under field conditions which gave rise to low copper status were treated with copper intravenously. Untreated ataxic animals served as controls. The neurotransmitter amines, dopamine, norepinephrine and serotonin, were determined in the anterior and posterior regions of the brain stem. Dopamine levels in the anterior region, including the corpus striatum, were significantly lower in the untreated animals than in those treated with copper. Norepinephrine levels were also lower but serotonin concentrations were not different. Plasma amine oxidase activity was markedly higher in the copper treated animals but monoamine oxidase activity in brain stem homogenates was not significantly affected. The monoamine oxidase activity in cortical and cerebellar homogenates was significantly lower in the treated animals than in the untreated animals.  相似文献   

20.
The effects on the thermogenic activity of brown adipose tissue of caging mice singly or in groups of different sizes has been investigated. At 23 degrees C the total cytochrome oxidase activity and the level of mitochondrial GDP binding were higher in mice caged singly than in mice caged in groups of three or six. At 4 degrees C GDP binding and cytochrome oxidase activity were lower in mice caged in groups of two, three or six than in mice caged singly. The mitochondrial concentration of uncoupling protein was not clearly affected by the number of mice in each cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号