首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the content of lysophosphoglycerides in a crude plasmalemmal fraction of canine heart during short-term ischemia (occlusion of the left descending coronary artery for 8 min) have been studied in the presence and in the absence of phosphocreatine and phosphocreatinine. In the control experiments without PCr or PCr-nine ischemia caused significant elevation of the content of LPG: that of lysophosphatidylcholine was increased by 83% and that of lysophosphatidylethanolamine by 168%. Intravenous administration of PCr and PCr-nine in doses of 300 mg/kg completely prevented accumulation of LPG in the ischemic zone. Because of the well-known arrhythmogenic properties of LPG, the inhibitory effect of PCr and PCr-nine on the elevation of their concentration in the ischemic zone may be closely related to the antiarrhythmic action of PCr and PCr-nine in acute myocardial ischemia.  相似文献   

2.
Using isotope-labeled microspheres (diameter 15 microns) it was shown that phosphocreatine at a dose of 300 mg/kg does not affect the myocardial blood flow in the ischemic zone during acute occlusion (5 min) of the left anterior descending coronary artery (LAD) in dogs. Intravenous administration of NaCl hypertonic solution which contained the same amount of Na+ as 300 mg/kg of phosphocreatinine disodium salt prevented the development of ventricular fibrillation during acute LAD occlusion in dogs. Under these conditions excitation conduction velocity significantly increased. Experiments in isolated intraventricular rabbit septum have showed that the addition of phosphocreatine or phosphocreatinine to the perfusion medium at a concentration of 10 mmole/liter increased excitation conduction velocity in ischemic myocardium. However, when changes in perfusate Na+ and Ca2+ concentration produced by addition of phosphocreatine or phosphocreatinine were compensated, these compounds do not affect excitation conduction velocity. On the other hand, the alterations similar to those produced by the addition of phosphocreatine or phosphocreatinine led to the same increase of excitation conduction velocity. The results obtained indicate an important role of the changes of blood plasma ionic composition on intravenous administration of phosphocreatine in electrophysiological and antiarrhythmic effects of this substance during acute myocardial ischemia.  相似文献   

3.
The mechanism of antiarrhythmic action of phosphocreatine on ischemic myocardium was studied by analyses of electrograms from normal and ischemic tissues. Ischemia induced significant changes in amplitude, duration, and conduction time of the electrograms, thereby showing depolarization of membranes and retarded conduction of excitation. Phosphocreatine administered in a single dose, 300 mg/kg iv, completely eliminated ventricular fibrillations in the ischemic hearts and significantly diminished the electrical instability occurring during reperfusion. The effects of phosphocreatine were completely reproduced by its structural analog phosphocreatine which is inactive in the creatine kinase reaction. It is concluded that the antiarrhythmic effect of both compounds is related to their specific chemical structure and that their specific effect is likely to be mediated via interaction with a sarcolemma site.  相似文献   

4.
The present state of investigations on molecular and cellular mechanisms of cardioprotective effects of phosphocreatine (PCr) is reviewed. The protective effect of PCr is manifested as significant improvement of heart contractile function recovery, lowering of diastolic pressure elevation and myocardial enzymes release during postischemic reperfusion as well as better preservation of high energy phosphates in comparison with control. Data from multidisciplinary studies using physico-chemical, physiological, pharmacological etc. approaches suggest that one of the key mechanisms of PCr action is its interaction with the sarcolemmal membrane. The authors own data obtained with the use of spin-labeled ESR-probe incorporated into the isolated sarcolemmal vesicles provide direct evidence in favor of the ordering effect of PCr sarcolemmal phospholipid packing with essential involvement of Ca2+ ions. PCr transform membrane phospholipids into more structured gel-like state. The results of biomedical studies suggest that the mechanism of this protective action is complex and includes at least four components: 1) inhibition of lysophosphoglyceride accumulation in the ischemic myocardium and preservation of cardiac cell sarcolemma structure via zwitterionic interaction with PCr molecules; ii) extracellular action consisting in inhibition of platelet aggregation via ADP removal in the extracellular creatine kinase reaction and increasing plasticity of red blood cells; iii) PCr penetration into cells maintenance of high local ATP levels is possible; iiii) inhibition of adenine nucleotide degradation at the step of 5'-nucleotidase reaction in cardiac cell sarcolemma.  相似文献   

5.
The diffusion and z-potentials of red cells of the blood outflowing from the zone of myocardial ischemia through the branch of the large cardiac vein were studied during acute period of experimental myocardial infarction. This enabled one to calculate the energy of electrostatic repulsion (EER) between blood constituents and to identify the factors exerting a significant effect on this value in acute experimental myocardial infarction induced in 20 dogs by ligation of the anterior interventricular branch of the left coronary artery. It was shown that the energetic state of the double electric lesion is the leading factor in the changed EER and in manifestation of the aggregation activity by the blood constituents. It was noted that the energetic potentials of red cells of the blood collected from the zone of myocardial ischemia show a statistically significant reduction.  相似文献   

6.
A study was made of the effect of ethacizine, a new antiarrhythmic phenothiazint derivative, on the size of experimental myocardial infarction in rabbits 7 days after ligation of the coronary artery. Ethmozine was used as reference. Ethacizine diminished the extent of necrosis by 22.8% (P less than 0.05) when injected intravenously in divided doses beginning from the 30th minute of 2-hour ligation, the total dose being 1.5 mg/kg. The six-day cycle of ethacizine treatment instituted 24 h after coronary artery ligation (daily dose 1.2 mg/kg) provoked a more considerable reduction of the myocardial infarction size (by 44.9%). The effect of ethmozine was less pronounced though statistically significant. Ethacizine increased ATP content in both the ischemic and "intact" myocardium and minimized the impairment of membrane permeability in the occlusion zone 3 h after ligation when injected according to the first above-described scheme. It is assumed that these effects may contribute to the drug protective action on the ischemic myocardium.  相似文献   

7.
The phospholipid composition of the crude plasma membrane fraction of Langendorff perfused rat hearts has been studied. The effect of phosphocreatine (PCr) and 3-phosphono-2-imino-1-methyl-4-oxoimidazolidine (PIMOI) on lysophosphoglycerides (LPG) level in this fraction isolated from hearts that were totally ischemic for 8 minutes, has been examined. The absolute and relative contents of LPG were significantly increased in ischemic hearts: the lysophosphatidylcholine content was elevated by 94% and that of lysophosphatidylethanolamine--by 77%. Accumulation of these LPG in ischemic myocardium was completely inhibited in the presence of 10 mM PCr or PIMOI in the perfusate. LPG may play a key role in the destruction of sarcolemma. Therefore, these data allow to assume that the protective effect of PCr and PIMOI on the sarcolemma of ischemic myocardium may be the result of their influence on the phospholipid metabolism in the ischemic region of the heart.  相似文献   

8.
Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities. We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague-Dawley rats, beraprost (200 microg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administration of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.  相似文献   

9.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

10.
缺血后处理内源性心脏保护的研究进展   总被引:3,自引:0,他引:3  
Liu XH 《生理学报》2007,59(5):628-634
再灌注疗法是临床治疗心肌缺血最有效的措施,但会引起再灌注损伤,调动机体内源性保护机制可以减轻再灌注损伤,保护缺血心肌。缺血预处理(ischemic preconditioning,IPC)和后处理(ischemic postconditioning,I-postC)是缺血心脏有效的内源性保护现象,可以减轻缺血再灌注(ischemia/reperfusion,I/R)后心肌坏死与心肌功能障碍,减少恶性心律失常的发生。内源性心脏保护的机制主要是通过诱导触发因子释放,经多条细胞内信号转导途径的介导,作用于多种效应器,影响氧自由基产生、钙超载等I/R损伤的关键环节而发挥心肌细胞保护作用。特别是可以在缺血后实施的I-postC具有良好的临床应用前景。本文以I-postC为重点综述内源性心脏保护作用、机制及其临床应用现状。  相似文献   

11.
The Na+/H+ exchanger (NHE) extrudes intracellular H+ in exchange for Na+ in an electroneutral process. Of the 6 mammalian exchanger isoforms identified to date, the NHE-1 is believed to be the molecular homologue of the sarcolemma Na+/H+ transporter. The exchanger is activated primarily by a reduction in intracellular pH, although such activation is subject to modulation by a variety of endogenous mediators (catecholamines, thrombin, endothelin) through receptor-mediated mechanisms. A large body of animal studies using both in vitro and in vivo models indicates that the inhibition of the sarcolemma NHE-1 attenuates myocardial injury in ischemia and reperfusion. Cardioprotective effects of NHE-1 inhibition involve a reduced susceptibility to severe ventricular arrhythmia, augmentation of contractile function recovery, and limitation of infarction size during reperfusion. Such protection is likely to arise partly from attenuation of "Ca2+ overload" in ischemic cardiomyocytes, which has been causally linked with all these pathologic phenomena. A marked benefit that has been observed with cariporide (HOE-642) and its structurally related congener HOE-694 in patients with acute myocardial infarction and in cardiac surgery demonstrates that selective NHE-1 inhibitors represent a novel and effective class of cardioprotectors.  相似文献   

12.
Acetaminophen, the active ingredient in Tylenol, is a widely used drug that is well known for its analgesic and antipyretic properties. Acetaminophen is a commonly used alternative to nonsteroidal anti-inflammatory drugs, which have recently been demonstrated to increase mortality after acute myocardial infarction (AMI). The safety and potential cardioprotective properties of acetaminophen in the setting of AMI have recently been investigated; however, the results from these studies have been inconclusive. Using both large (ovine) and small (rabbit) collateral-deficient animal models, we studied the effects of acetaminophen in the setting of reperfused AMI. In both species we studied the effects of acetaminophen on myocardial salvage and ventricular function. Additionally, we studied the effects of acetaminophen on myocardial perfusion in sheep and on myocyte apoptosis in rabbits. Sixteen sheep and twenty-two rabbits were divided into two groups and administered acetaminophen or a vehicle before undergoing ischemia and reperfusion. The ischemic period was 60 min in sheep and 30 min in rabbits. All animals were reperfused for 3 h. There were no significant differences observed in myocardial perfusion, myocyte apoptosis, or infarct size in acetaminophen-treated animals. Acetaminophen increased cardiac output and mean arterial pressure before ischemia in sheep but had no effect on any other hemodynamic parameter. In rabbits, no effect on cardiac output or blood pressure was detected. These results support the role of acetaminophen as a safe drug in the postmyocardial infarction setting; however, no significant cardioprotective effect of the drug could be demonstrated.  相似文献   

13.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

14.
目的:通过比较不同强度及时间窗骨骼肌缺血后处理对兔缺血/再灌注心肌的保护效能,试图寻找最佳强度和时间窗的骨骼肌缺血后处理方案。方法:健康新西兰大白兔42只(雄性)随机分为7组(n=6):①假手术组(Sham)、②缺血对照组(CON)、③标准骨骼肌后处理组(SP)、④延迟6min骨骼肌后处理组(6M-DSP)、⑤延迟1 min骨骼肌后处理组(1M-DSP)、⑥骨骼肌后处理加强组(SSP)、⑦骨骼肌后处理减弱组(WSP)。以开胸结扎冠状动脉左室支固定部位方法制作缺血/再灌注模型,以游离并夹闭双侧腹股沟髂外动脉固定位置方法造成骨骼肌缺血,再灌注末以TTC法确定心肌梗死范围,并分别于心肌缺血前、后及再灌注1 h、2 h,以生化法测定血清肌酸激酶(CK)及乳酸脱氢酶(LDH)水平。结果:和CON组相比,1M-DSP组心肌梗死重量比及面积比分别下降了42.32%及42.68%、SP组分别下降了49.97%及43.78%、SSP组分别下降了48.36%及48.86%,(P均<0.05),但三组之间相比,心梗范围未见明显差异;而6M-DSP、WSP组与CON组相比未见心肌保护作用;肌酸激酶(CK)的水平和梗死范围变化趋势一致。结论:兔在心肌缺血/再灌注之前完成骨骼肌5 min缺血/1 min再灌注1次循环的缺血后处理,可以起到明显的心肌保护作用。  相似文献   

15.
The uptake of 32P-phosphocreatine by control and ischemic isolated perfused rat hearts has been studied. The rate of phosphocreatine (PCr) uptake by the hearts after 35 minutes of ischemia was two times that in control hearts at 0.5-10 mM PCr in the perfusate. At 10 mM PCr in the perfusate, this rate was 182 nmoles/min/g dry weight. The 5'-nucleotidase and phosphatase activities were found in the crude plasma membrane fraction of rat heart. The pH-dependence of these enzymes was examined. The 5'-nucleotidase activity decreased with a drop in pH from 8.0 to 6.0. The phosphatase activity in the crude plasma membrane fraction of rat heart was increased 2-fold with a decrease in pH from 8.0 to 6.0. The 5'-nucleotidase activity was inhibited by 10 mM PCr in the presence of 5 mM Mg2+. This inhibition was pH-dependent with a maximum (58%) at pH 6.0. The inhibition of phosphatase activity by PCr was independent of pH and reached 20% in the presence of 10 mM PCr. Some feasible mechanisms of the protective effect of PCr on ischemic myocardium are discussed.  相似文献   

16.
Inhibition of Na+/H+ exchange with amiloride analogues has been shown to provide functional protection during ischemia and reperfusion and to reduce infarct size in isolated rat hearts. In rat hearts, treatment with ethylisopropyl-amiloride (EIPA, a selective Na+/H+ exchange inhibitor) was additive to the protection afforded by ischemic preconditioning. In addition, such compounds have been demonstrated to reduce infarct size in in situ rabbit hearts. The aim of the present study was to determine to what extent preischemic treatment with EIPA could reduce infarct size in an in situ rabbit model of regional ischemia and reperfusion. We also wished to determine if this effect was additive to the infarct reducing effect of ischemic preconditioning. Anaesthetized, open chest rabbits, were subjected to 45 min of regional ischemia and 150 min of reperfusion. The risk zone was determined by fluorescent particles and infarct size was determined by TTC staining. Four groups were investigated: control, ischemic preconditioned (IP) (5 min of ischemia followed by 10 min reperfusion), EIPA (0.65 mg/kg iv given preischemically) and EIPA + IP. The main results expressed as percent infarction of the risk zone ± S.E.M. for the different groups were: control 59.2 ± 3.3% (n = 6), IP 16.3 ± 2.1% (n = 6) (p < 0.001 vs. control), EIPA 16.9 ± 4.1% (n = 5) (p < 0.001 vs. control), EIPA + IP 22.5 ± 9.5% (n = 6) (p < 0.001 vs. control). In conclusion: EIPA, when administered prior to ischemia, caused a reduction in infarct size in the in situ rabbit heart which was similar to that seen with ischemic preconditioning, however, the effect was not additive to ischemic preconditioning.  相似文献   

17.
The multidrug-resistant (MDR)-1 gene-encoded P-glycoprotein (Pgp-170) is not normally present in the cardiomyocyte. Given that in other tissues Pgp-170 is not found under normoxic conditions but is expressed during hypoxia, we searched for Pgp-170 in chronically ischemic porcine cardiomyocytes. Pgp-170 was detected and localized via immunohistochemistry in ischemic and nonischemic cardiomyocytes of eight adult pigs 8 weeks after placement of an Ameroid constrictor at the origin of the left circumflex artery (Cx). Regional myocardial ischemia in the Cx bed was documented with nuclear perfusion scans. Pgp-170 mass was quantified using Western blot analysis. In all pigs, Pgp-170 was consistently present in the sarcolemma and T invaginations of the cardiomyocytes of the ischemic zone. Pgp-170 expression decreased toward the border of the ischemic zone and was negative in nonischemic regions as well as in the myocardium of sham-operated animals. Western blot analysis yielded significantly higher Pgp-170 mass in ischemic than in nonischemic areas. We conclude that Pgp-170 is consistently expressed in the cardiomyocytes of chronically ischemic porcine myocardium. Its role in the ischemic heart as well as in conditions such as myocardial hibernation, stunning, and preconditioning may have potentially relevant clinical implications and merits further investigation.  相似文献   

18.
Erythropoietin has recently been shown to have effects beyond hematopoiesis such as prevention of neuronal and cardiac apoptosis secondary to ischemia. In this study, we evaluated the in vivo protective potential of erythropoietin in the reperfused rabbit heart following ventricular ischemia. We show that "preconditioning" with erythropoietin activates cell survival pathways in myocardial tissue in vivo and adult rabbit cardiac fibroblasts in vitro. These pathways, activated by erythropoietin in both whole hearts and cardiac fibroblasts, are also activated acutely by ischemia/reperfusion injury. Moreover, in vivo studies indicate that erythropoietin treatment either prior to or during ischemia significantly enhances cardiac function and recovery, including left ventricular contractility, following myocardial ischemia/reperfusion. Our data indicate that a contributing in vivo cellular mechanism of this protection is mitigation of myocardial cell apoptosis. This results in decreased infarct size as evidenced by area at risk studies following in vivo ischemia/reperfusion injury, translating into more viable myocardium and less ventricular dysfunction. Therefore, erythropoietin treatment may offer novel protection against ischemic heart disease and may act, at least in part, by direct action on cardiac fibroblasts and myocytes to alter survival and ventricular remodeling.  相似文献   

19.
Summary.  Phosphocreatine can to some extent compensate for the lack of ATP synthesis that is caused in the brain by deprivation of oxygen or glucose. Treatment of in vitro rat hippocampal slices with creatine increases the neuronal store of phosphocreatine. In this way it increases the resistance of the tissue to anoxic or ischemic damage. In in vitro brain slices pretreatment with creatine delays anoxic depolarization (AD) and prevents the irreversible loss of evoked potentials that is caused by transient anoxia, although it seems so far not to be active against milder, not AD-mediated, damage. Although creatine crosses poorly the blood-brain barrier, its administration in vivo at high doses through the intracerebroventricular or the intraperitoneal way causes an increase of cerebral phosphocreatine that has been shown to be of therapeutic value in vitro. Accordingly, preliminary data show that creatine pretreatment decreases ischemic damage in vivo. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

20.
It is shown that a single intravenous injection of phosphocreatine to man or to experimental animals is followed by its rapid clearance from blood serum. This clearance is biphasic in nature with a half-life of 3-5 min at the first rapid stage and of 20-33 min at the next slower stage. To maintain the constant phosphocreatine concentration in blood, it is necessary to infuse it at a rate comparable to that of clearance. In particular, in blood serum of man, the phosphocreatine concentration can be kept at the level of 0.2 mM if it is injected at a rate of 60 mg/h per kg bw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号