首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The paper sought to determine the exercise intensity where the slow component of oxygen uptake (Vo(2)) first appears in decremental work load exercise (DLE). Incremental work load exercise (ILE) was performed with an increment rate of 15 watts (W) per minute. In DLE, power outputs were decreased by 15 W per minute, from 120 (DLE(120)), 160 (DLE(160)), 200 (DLE(200)) and 240 (DLE(240)) W, respectively. The slopes of Vo(2) against the power output were obtained in the lower section from 0 to 50 W in all DLEs, and in the upper section from 80 to 120 W in DLE(160) and from 100 to 150 W in DLE(200) and DLE(240). The power output at exhaustion in ILE was 274 +/- 20 W. The power output at the ventilatory threshold (VT) obtained in ILE was 167 +/- 22 W. The initial power output in DLE(160) was near the power output at VT. The slopes obtained in the upper sections were 11.4 +/- 0.9 ml x min(-1) x W(-1)1 in DLE(160), 12.8 +/- 0.8 ml x min(-1) x W(-1) in DLE(200), and 14.8 +/- 1.1 ml x min(-1) x W(-1) in DLE(240). The slope obtained in DLE(120) was 10.9 +/- 0.6 ml x min(-1). There were no differences in slope between the upper and lower sections in DLE(160) but there were significant differences in slopes between the upper and lower sections in DLE(200) and DLE(240). Thus, the slow component, which could be observed as a steeper slope in DLE, began to increase when the initial power output in DLE was near to VT.  相似文献   

2.
The aim of this study was to assess the relationship between spontaneously chosen crank rate (SCCR) and power output during two upper body exercise tests: firstly, an incremental maximal aerobic power test (T1), with an initial intensity of 50 W followed by 15-W increases at each subsequent 90-s stage and secondly, a test (T2) with consecutive exercise periods set at 50%, 60%, 70%, 80%, 110% and 120% of maximal power (Pmax) separated by passive recovery periods. Eight nationally and internationally ranked kayakers, aged 20 (SD 2) years, performed the tests. During both T1 and T2, mean SCCR values were correlated (r = 1) and increased significantly (P < 0.05) in association with the increases in power output. The finding that the subjects consistently increased their crank rate as the power output increased in different tests, i.e. at submaximal, maximal and supramaximal intensities, strongly suggests that SCCR depended on power output and not on the type of exercise (incremental or rectangular exercise). Moreover, the equation relating crank rate and power output determined from T1 suggests that it may be used to predict the crank rate which will be chosen in upper body exercise, whatever the intensity. Finally, the results of testing at 110% and 120% of Pmax would suggest that a high crank rate (>90 rpm) should be used during the test procedure using supramaximal exercises where accumulated oxygen deficit is calculated, and more particularly when exercise is performed using the upper body.  相似文献   

3.
In transversely sectioned rat hippocampal slices the effects of 2-amino-5-phosphonovalerate (APV), presumably a selective N-methyl-DL-aspartate antagonist, were examined on the development of long-lasting potentiation (LLP) of the CA1 population spike produced by Schaffer collateral tetanization (100 Hz, 1 s). APF (100 nA, 5 min), when applied 150-200 micron away from the CA1 cell bodies (apical dendritic area), had no significant effect if the population spike was evoked at 0.1 Hz, but produced a depression of the population spike if a 100 Hz tetanus was given during its iontophoresis. This depressant effect of APV was counteracted by verapamil (0.33 microM, 3 min) and LLP induced by the 100 Hz tetanus was unmasked. It is suggested that APV does not antagonize LLP, but only masks it by allowing CA++ influx into CA1 neurones that induces a depression. The results also raise doubts as to the selectivity of APV as an amino acid antagonist.  相似文献   

4.
Fructose 2,6-bisphosphate and several glycolytic intermediates were measured in two rat muscles, extensor digitorum longus and gastrocnemius, which were electrically stimulated in situ. Both the duration and the frequency of stimulation were varied to obtain different rates of glycolysis. There was no relationship between fructose 2,6-bisphosphate content and the increase in tissue lactate in contracting muscle. However, in gastrocnemius stimulated at low frequencies (less than or equal to 5 Hz), there was a 2-fold increase in fructose 2,6-bisphosphate at 10s, followed by a return to basal values, whereas lactate increased only after 1 min of contraction. The concentrations of hexose 6-phosphates, fructose 1,6-bisphosphate and triose phosphates were all increased during the 3 min stimulation. During tetanus (frequencies greater than or equal to 10 Hz) fructose 2,6-bisphosphate was not increased, whereas glycolysis was maximally stimulated and resulted in an accumulation of tissue lactate, mostly from glycogen. The concentrations of hexose 6-phosphate increased continuously during the 1 min tetanus, whereas fructose 1,6-bisphosphate was increased at 10s and then decreased progressively. It therefore appears that fructose 2,6-bisphosphate does not play a role in the stimulation of glycolysis during tetanus; it may, however, be involved in the control of glycolysis when the muscles are stimulated at low frequencies for short periods of time.  相似文献   

5.
The present experiment investigated whether or not auditory responses of the middle and/or inner ear in guinea pigs to low frequency sound stimuli [ 60 Hz-2 kHz at 90-120 dB(SPL) ] exhibited the harmonic distortion phenomenon resulting from cochlear microphonics (CM). Measurement of CM leading in turn I by the differential electrode recording method involved measurement of 50 microV isopotential responses, output voltages and CM wave form distortion at each constant sound pressure. The results obtained were as follows: (1) On the 50 microV isopotential response curve and the output voltage curves, the changes at 60-90 Hz were different from those at higher frequencies. (2) At stimuli of 90 or 100 dB(SPL), CM wave form distortion appeared frequently at frequencies below 120 Hz, but were less pronounced above approximately 200 Hz. (3) When raised to 110 and 120 dB(SPL), almost all CM wave forms were distorted at all test frequencies between 60 and 500 Hz. (4) The patterns of CM wave form distortion at frequencies below approximately 120 Hz showed peak clipping and triangular wave distortions, while those at frequencies above approximately 200 Hz showed little of these distortions.  相似文献   

6.
A brief high-frequency burst of action potentials results in a sustained force increase in skeletal muscle. The present study investigates whether this force potentiation is the result of a sustained increase of the free myoplasmic [Ca2+] ([Ca2+]i). Single fibers from mouse flexor brevis muscles were stimulated with three impulses at 150 Hz (triplet) at the start of a 350-ms tetanus or in the middle of a 700-ms tetanus; the stimulation frequency of the rest of the tetanus ranged from 20 to 60 Hz. After the triplet, force was significantly (P < 0.05) increased between 17 and 20% when the triplet was given at the start of the tetanus and between 5 and 18% when the triplet was given in the middle (n = 7). However, during this potentiation, [Ca2+]i was not consistently increased. Hence, the increased force following a high-frequency burst is likely due to changes in the myofibrillar properties.  相似文献   

7.
Output of acetylcholine (ACh), neurogenic electromyogram (NEMG) and contractions of guinea-pig ileum preparations were studied during stimulation by high-frequency trains of impulses. Under control conditions the output of ACh per impulse after 2nd to 4th impulses during train stimulation (30 Hz) was higher by 20-40% than the level of ACh output during the first impulse. In the presence of ketocyclazocine (KTZ, 80 nmol x l-1) the output of ACh evoked by the first impulse was more effectively inhibited than that after impulses 2 to 4 so that the increase was higher (80-170%). NEMG, a direct consequence of the localized action of released transmitter (ACh), was recorded in the longitudinal muscle 4 and 10 mm aborally from the focal stimulation site. The incidence of NEMG responses was higher at the proximal than at the distal site and was proportional to the number of impulses in a train (100 Hz). At the distal site KTZ suppressed the appearance of NEMG responses to single impulses whereas at the proximal site its effect was much less; and so was its effect at either site during train stimulation. It is concluded that in the course of train stimulation, sites of transmission more distant from the stimulation focus were recruited, and consequently the secretion of ACh in succeeding impulses was enhanced. KTZ might preferentially inhibit the propagation of excitation by the very first impulse.  相似文献   

8.
This experiment was designed to estimate the optimum pedal rates at various power outputs on the cycle ergometer. Five trained bicycle racers performed five progressive maximal tests on the ergometer. Each rode at pedal rates of 40, 60, 80, 100, and 120 rev X min-1. Oxygen uptake and heart rate were determined from each test and plotted against pedal rate for power outputs of 100, 150, 200, 250, and 300 W. Both VO2 and heart rate differed significantly among pedal rates at equivalent power outputs, the variation following a parabolic curve. The low point in the curve was taken as the optimal pedal rate; i.e., the pedal rate which elicited the lowest heart rate or VO2 for a given power output. When the optimum was plotted against power output the variation was linear. These results indicate that an optimum pedal rate exists in this group of cyclists. This optimum pedal rate increases with power output, and when our study is compared to studies in which elite racers, or non-racers were used, the optimum seems to increase with the skill of the rider.  相似文献   

9.
In transversely sectioned rat hippocampal slices, population spikes and population "EPSPs" were recorded from CA1 neurones in response to the stimulation of Schaffer collateral and commissural inputs. High frequency tetanic stimulation (400 Hz, 200 pulses) of an input induced LLP of the homosynaptic response without significantly changing the heterosynaptic response. This LLP was not interrupted by either a 400 Hz tetanus given to the heterosynaptic input or by verapamil (0.33 microM) which blocks Ca++ channels, but not transmitter release. A low frequency tetanus (20 Hz, 200 pulses) given to an input induces co-occurring homosynaptic and heterosynaptic depressions of about 20 min duration. This tetanus could also mask an established LLP in homosynaptic or heterosynaptic pathway. Verapamil counteracts homo- and heterosynaptic depressions. The population spike as well as the population "EPSP" were depressed following iontophoretic application of Ca++ (2-100 nA) at the CA1 cell body area. These results indicate that homosynaptic and heterosynaptic depressions are at least partly due to an accumulation of Ca++ into CA1 neurones. An established LLP is not interrupted by LLP of another input. Homo- and heterosynaptic depressions mask, but not reverse, LLP.  相似文献   

10.
The effect of post-tetanic potentiation (PTP) induced in the pectoralis and triceps brachii muscles by high-frequency submaximal percutaneous electrical stimulation (PES) on average and maximal power attained in bench press throwing was measured in 12 healthy men. Three PES regimens were used: (a) a 7-second and (b) a 10-second trial at 100 Hz, and (c) an intermittent trial with 8 1-second tetanic trains at 100 Hz with rest periods of 20 seconds. Only nonsignificant (p > 0.05) increase was observed in average power at 8 minutes and in maximal power at 5, 8, and 11 minutes after tetanus after 7-second trial, and in maximal power at 5 and 8 minutes after tetanus after an intermittent trial. These data indicate that PES application was a noneffective stimulus for increased bench press performance. A great interindividual variability response was observed and, therefore, PTP induction for improving upper-body muscle performance needs further experiments.  相似文献   

11.
Energy characteristics (power spectra) of short-term (less than 1 s) EEG-reactions were studied in dogs in the course of instrumental conditioning. These reactions were observed in different areas of the cortex during selective attention in response to positive conditioned stimuli. They immediately preceded strong blow with a paw on the pedal of feeding cup and taking the reward. The EEG power at these moments was 1.5-3 times higher than the baseline EEG power level in a prestimulus period. The high-frequency structure of corresponding EEG reactions comprised discrete individual spectral peaks both in traditional (1-30 Hz) and gamma (30-80 Hz) ranges and higher-frequency components (80-200 Hz) as well. In some cases, the higher-frequency components (80-200 Hz) were most pronounced.  相似文献   

12.
To determine the skeletal muscle stimulation parameters that are most important in establishing vasodilation in the microvasculature, I tested whether arteriolar diameter during 2 min of repetitive, short-duration, tetanic skeletal muscle contractions increased with changes in stimulus frequency, stimulation train duration, and contraction frequency. To test this, the diameter of transverse arterioles approximately perpendicular to small bundles of cremaster muscle fibers in situ of anesthetized Golden Syrian hamsters was used as a bioassay system. Arteriolar diameter was measured before and during different stimulation patterns that consisted of a contraction frequency [6, 12, or 24 contractions per minute (cpm)], a stimulation train duration (250, 500, or 750 ms) and a stimulus frequency (4, 8, 10, 15, 20, 30, 40, 60, and 80 Hz). The magnitude of the dilation significantly increased with stimulus frequency but not in a simple linear manner. The average rate of increase was 0.32 +/- 0.02 microm/Hz from 4 to 20 Hz and 0.09 +/- 0.02 microm/Hz from 30 to 80 Hz. The magnitude of the dilation increased significantly with the contraction frequency where the dilation at 6 cpm was significantly smaller than the dilation at 24 cpm across all stimulus frequencies. Changing the train duration from 250 to 750 ms did not significantly affect the magnitude of the dilation. These observations suggest that stimulation parameters are important in determining the magnitude of the microvascular dilation and that the magnitude of the dilation was dependent on both the contraction frequency and stimulus frequency but was independent of train duration.  相似文献   

13.
The purpose of this study was to investigate the acute effect of whole-body vibration with a frequency of 50 Hz (WBV(50Hz)) on peak power in squat jump (SJ), 1 repetition maximum (1RM) in parallel squat, and electromyography (EMG) activity and compare them with no-vibration conditions in power lifters. Twelve national level male power lifters (age 24 ± 5 years, body mass 110 ± 24 kg, height 179 ± 7 cm) tested peak power in SJ and 1RM in parallel squat while they were randomly exposed to WBV(50Hz) or to no vibration. These tests were performed in a Smith Machine. Peak power output was higher while performed with a WBV(50Hz) compared with the no-WBV condition (p < 0.05). This increase in power output was accompanied by higher EMG starting values and EMG peak values of the investigated thigh muscles during WBV(50Hz) (p < 0.05). There was no difference between adding WBV(50Hz) and no-vibration conditions in 1RM parallel squat. In conclusion, the results of this study suggest that the application of WBV(50Hz) acutely increases peak power output during SJ in well strength trained individuals such as power lifters. This increase in power was accompanied by an increased EMG activity in the quadriceps muscles. However, in 1RM parallel squat, there was no difference between WBV50Hz and no-vibration conditions. Therefore, adding WBV(50Hz) has no acute additive effect on 1RM parallel squat in power lifters and, based on the present findings, may thus not be recommended in the training to improve 1RM in power lifters. However, WBV(50Hz) seems to have an acute additive effect on peak power output and may be used in well strength trained individuals for whom a high power output is important for performance.  相似文献   

14.
满恒业  刘磊 《生理学报》1992,44(1):92-97
实验在45只麻醉、自主呼吸、断双侧颈迷走神经的家兔上进行。电刺激或微量注射L-谷氨酸钠于中缝隐核(Nucleus raphe obscurus,NRO),观察到:(1)长串电脉冲刺激NRO(50—200μA,波宽0.3ms,100Hz,4—6s),出现膈神经放电被抑制的反应,被抑制的程度与刺激强度、刺激频率间存在相关性。(2)吸气期用短串电脉冲(100—200μA,波宽0.3ms,50—100Hz,5—20个脉冲)刺激NRO,可提前终止膈神经放电,产生吸气切断效应。吸气切断时间具有刺激落位和刺激强度依赖性。(3)NRO内微量注射细胞体兴奋剂谷氨酸钠(1mol/L,1μl),注药期间出现膈神经放电抑制,注药后为吸气时程(Ti)缩短和呼气时程(Te)延长。  相似文献   

15.
The purpose of this investigation was to examine the impact of load on the power-, force- and velocity-time curves during the jump squat. The analysis of these curves for the entire movement at a sampling frequency of 200-500 Hz averaged across 18 untrained male subjects is the most novel aspect of this study. Jump squat performance was assessed in a randomized fashion across five different external loads: 0, 20, 40, 60, and 80 kg (equivalent to 0 +/- 0, 18 +/- 4, 37 +/- 8, 55 +/- 12, 74 +/- 15% of 1RM, respectively). The 0-kg loading condition (i.e., body mass only) was the load that maximized peak power output, displaying a significantly (p 相似文献   

16.

Background

Thalamocortical EEG rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. To test the hypothesis that general anesthetics attenuate these rhythms, we characterized the concentration-effect relationship of propofol on the spectral power of these rhythms. In view of the ongoing debate about cortex versus thalamus as the primary site of anesthetic action for unconsciousness, we also compared the relative sensitivity of cortex and thalamus to this effect propofol.

Methods

Adult male Long-Evans rats were chronically implanted with electrodes in somatosensory (barrel) cortex and ventroposteromedial thalamus. Propofol was delivered by a computer-controlled infusion using real-time pharmacokinetic modeling to obtain the desired plasma concentration. Spectral power was assessed during baseline, at four stable propofol plasma-concentrations (0, 3,6,9,12 μg/ml) and during recovery over four frequency ranges (30-50, 51-75, 76-125, 126-200 Hz). Unconsciousness was defined as complete loss of righting reflex. Multiple regression was used to model the change of power (after logarithmic transformation) as a function of propofol concentration and recording site.

Results

Unconsciousness occurred at the 9 μg/ml concentration in all animals. Propofol caused a robust linear concentration-dependent attenuation of cortical power in the 76-200 Hz range and of thalamic power in the 51-200 Hz range. In all instances the concentration-effect slope for the thalamus was markedly steeper than for the cortex. Furthermore the lowest concentration causing unconsciousness significantly reduced cortical power in the 126-200 Hz range and thalamic power in the 51-200 Hz range.

Conclusions

Propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 51-200 Hz range and this effect is far more pronounced for the thalamus, where the attenuation provides a robust correlate of the hypnotic action of propofol.  相似文献   

17.
The aim of the study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling at different work loads and speeds. Six healthy subjects pedalled a weight-braked cycle ergometer at 0, 120 and 240 W at a constant speed of 60 rpm. The subjects also pedalled at 40, 60, 80 and 100 rpm against the same resistance, giving power outputs of 80, 120, 160 and 200 W respectively. The subjects were filmed with a cine-film camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work for the hip, knee and ankle joint muscles was calculated using a model based upon dynamic mechanics and described elsewhere. The total work during one pedal revolution significantly increased with increased work load but did not increase with increased pedalling rate at the same braking force. The relative proportions of total positive work at the hip, knee and ankle joints were also calculated. Hip and ankle extension work proportionally decreased with increased work load. Pedalling rate did not change the relative proportion of total work at the different joints.  相似文献   

18.
The effect of long-term potentiation (LTP) on endogenous amino acid release from rat hippocampus slices was studied. LTP was induced in vivo by application of a tetanus (200 Hz, 200 ms) to the Schaffer collateral fibers in unanesthetized rats. Endogenous release of glutamate and gamma-aminobutyric acid (GABA) was investigated 60 min after tetanization in CA1 subslices of potentiated and control rats. No significant effects of LTP were observed in basal and K(+)-induced Ca(2+)-independent release components of these amino acids. In contrast, K(+)-induced Ca(2+)-dependent release of both glutamate and GABA increased approximately 100% in slices from potentiated rats. No differences were observed in total content of glutamate and GABA between the subslices from control and LTP animals. These results suggest a persistent increase in the recruitment of the presynaptic vesicular pool of glutamate and GABA during LTP.  相似文献   

19.
To test the hypothesis that measurable changes in microvasculature dilation occur in response to a single short-duration tetanic contraction, we contracted three to five skeletal muscle fibres of the hamster cremaster muscle microvascular preparation (in situ) and evaluated the response of an arteriole overlapping the active muscle fibres. Arteriolar diameter (baseline diameter = 16.4 +/- 0.9 micro m, maximum diameter = 34.7 +/- 1.2 micro m) was measured before and after a single contraction resulting from a range of stimulus frequencies (4, 10, 20, 30, 40, 60, and 80 Hz) within a 250- or 500-ms train. Four and 10 Hz produced a significant dilation at 2.9 +/- 0.4 and 6.5 +/- 2.8 s, respectively, within a 250-ms train and 3.0 +/- 0.2 and 6.1 +/- 1.3 s, respectively, within a 500-ms train. Biphasic dilations were observed within a 250-ms train at 20 Hz (at 3.9 +/- 0.9 and 22.1 +/- 4.3 s), 30 Hz (at 2.7 +/- 0.3 and 17.5 +/- 2.9 s), and 40 Hz (at 3.8 +/- 0.4 and 23.2 +/- 2.6 s) and within a 500-ms train at 20 Hz (at 4.8 +/- 0.4 and 31.9 +/- 3.8 s) and 30 Hz (at 3.4 +/- 0.3 and 27.6 +/- 3.0 s). A single dilation was observed within a 250-ms train at 60 Hz (at 5.1 +/- 0.7 s) and 80 Hz (at 14.2 +/- 3.3 s) and within a 500-ms train at 40 Hz (at 9.9 +/- 3.2 s), 60 Hz (at 7.9 +/- 2.1 s), and 80 Hz (at 13.4 +/- 4.0 s). We have shown that a single contraction ranging from a single twitch (4 Hz, 250 ms) to fused tetanic contractions produces significant arteriolar dilations and that the pattern of dilation is dependent on the stimulus frequency and train duration.  相似文献   

20.
B R Sastry  J W Goh 《Life sciences》1984,34(15):1497-1501
In transversely sectioned rat hippocampal slices, the effects of low (20 Hz, 600 pulses) and high (400 Hz, 200 pulses) frequency tetani of Schaffer collaterals were examined on the CA1 population spike as well as on the binding of 3H-glutamate. The population spike was suppressed while 3H-glutamate binding greatly enhanced following a low frequency tetanus. Verapamil (1 micron), which does not block long-lasting potentiation (LLP), counteracted the depression of the population spike as well as the associated increase in 3H-glutamate binding. The high frequency tetanus induced LLP of the population spike but caused no change in the amino acid binding. These results indicate that the increase in the number of glutamate receptors is not a requirement for LLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号