首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.
Hunting for excitement: NMDA receptors in Huntington's disease   总被引:1,自引:0,他引:1  
Ellerby LM 《Neuron》2002,33(6):841-842
Excitotoxic cell death stimulated by quinolinic acid injection into the striatum has a long history of "mimicking" many aspects of motor, behavioral, and neurochemical changes observed in Huntington's disease patients. In this issue of Neuron, provide insight into the role of NMDA receptors in the cell-specific excitotoxic death observed in Huntington's disease (HD) using a HD mouse model expressing full-length mutant huntingtin (htt).  相似文献   

2.
Energetic Dysfunction in Quinolinic Acid-Lesioned Rat Striatum   总被引:1,自引:1,他引:0  
Abstract: Impairment of mitochondrial energy metabolism may contribute to the selective neuronal degeneration observed in Huntington's disease and other neurodegenerative disorders. Intrastriatal injection of the excitotoxin, quinolinic acid, produces a pattern of neuronal death similar to that seen in Huntington's disease. However, little is known about the effects of quinolinic acid on striatal energetics. In the present work, time-dependent changes in energy metabolism caused by injection of quinolinic acid into rat striatum were examined. Oxygen consumption by free and synaptic mitochondria was quantified and correlated with the concentrations of nucleotides and amino acids at different times after injection. Compared with saline-treated controls, a decrease in ADP-stimulated (state 3) to basal (state 4) oxygen consumption (respiratory control ratio) by free mitochondria was apparent in quinolinic acid-injected striata as early as 6 h after treatment. No significant changes were seen in nucleotide concentrations at this time. By 12 h after injection, the decline in the respiratory control ratio was more pronounced (45%), and reductions in ATP, NAD, aspartate, and glutamate (30–60%) were also observed. These results show that injection of quinolinic acid in vivo produces progressive mitochondrial dysfunction, which may be a common and critical event in the cell death cascade initiated in Huntington's disease and in animal models of this neurodegenerative disorder. The indicators of mitochondrial function examined in this study, therefore, may be useful in evaluating the efficacy of neuroprotective agents.  相似文献   

3.
Cerebrospinal Fluid Nitrite/Nitrate Levels in Neurologic Diseases   总被引:5,自引:0,他引:5  
Abstract: Nitric oxide has been proposed to mediate cytotoxic effects in inflammatory diseases. To investigate the possibility that overproduction of nitric oxide might play a role in the neuropathology of inflammatory and noninflammatory neurological diseases, we compared levels of the markers of nitric oxide, nitrite plus nitrate, in the CSF of controls with those in patients with various neurologic diseases, including Huntington's and Alzheimer's disease, amyotrophic lateral sclerosis, and HIV infection. We found that there were no significant increases in the CSF levels of these nitric oxide metabolites, even in patients infected with HIV or in monkeys infected with poliovirus, both of which have significantly elevated levels of the neurotoxin quinolinic acid and the marker of macrophage activation, neopterin. However, CSF quinolinic acid, neopterin, and nitrite/nitrate levels were significantly increased in a small group of patients with bacterial and viral meningitis.  相似文献   

4.
Increase in Kynurenic Acid in Huntington''s Disease Motor Cortex   总被引:2,自引:2,他引:0  
Huntington's disease is a neurological disorder characterised by a progressive chorea and dementia. Recent evidence has suggested that dysfunction involving endogenous excitatory amino acids may be important in the pathogenesis of this disease. Following the recent demonstration that kynurenic acid is present in the brain, we examined the levels in various areas of brain from patients who died with Huntington's disease and from age/sex-matched controls. Blocks (100-500 mg) of cortex (Brodmann's areas 4 and 10) and caudate nucleus and globus pallidus (lateral and medial parts) were obtained from the Cambridge Brain Bank. The tissue was then processed for the extraction and analysis of kynurenic acid. Whereas no differences in the content of kynurenic acid were observed in the caudate nucleus, lateral or medial globus pallidus, or prefrontal cortex (area 10) between controls' brains and those from patients who died with Huntington's disease, there was a 94% (p less than 0.01; n = 5) increase in the kynurenic acid content in the motor cortex (area 4) from Huntington's disease brains, relative to those of controls. Some time ago we suggested that a subtle change in the relative concentrations of quinolinic and kynurenic acids might be important in the pathogenesis of neurodegeneration. It is possible that the observation of raised kynurenic acid levels supports this supposition. Further work is now in progress to determine whether the change in kynurenic acid is a primary effect or a compensatory response to an increase in excitatory activity.  相似文献   

5.
Brain Quinolinic Acid in Huntington''s Disease   总被引:6,自引:4,他引:2  
Concentrations of the endogenous neurotoxic tryptophan metabolite, quinolinic acid (QA), were measured in postmortem brain tissue obtained from patients with Huntington's disease (HD) and matched controls, using a gas chromatography/mass spectrometry method. There was no significant difference in either the putamen or the frontal cortex between the HD and control groups. These results do not support the hypothesis that increased QA is responsible for neuronal degeneration in HD.  相似文献   

6.
Striatal-quinolinic acid lesions have been used as a model for the pathology seen in Huntington's disease. Seven days following a unilateral injection of 100 nmol of quinolinic acid into the rat caudate-putamen (striatum), a large increase in the binding of [3H]WIN 35,428 to the lesioned caudate putamen was seen when compared to the unlesioned side. Binding in other brain regions was unchanged. These data indicate that there is an increase in dopaminergic uptake sites in the lesioned caudate-putamen and suggest a target for further study in Huntington's disease.  相似文献   

7.
The excretion of quinolinic acid was studied in growing and resting cells of Escherichia coli K-12 nadC(13). Under optimal conditions, this organism could synthesize quinolinic acid in several-fold excess of the amount which would be required for normal growth. The excretion of quinolinic acid was controlled by the concentration of nicotinamide adenine dinucleotide (NAD) precursors available to the organism either during growth or during incubation in dense cell suspensions. These observations suggest that biosynthesis of NAD de novo is regulated by both repression and feedback inhibition. Analogues of niacin which inhibit bacterial growth also inhibited and repressed the synthesis (excretion) of quinolinic acid. The pH optimum for quinolinic acid excretion agreed favorably with the optimum observed for its synthesis in vitro. The rate of quinolinic acid excretion was strongly influenced by the concentration of ribose or glycerol in the medium.  相似文献   

8.
We examined the activity of striatal superoxide dismutase (SOD) in two acute pharmacological models of Huntington's disease (HD), and compared it with SOD activity in the striata of mice transgenic for the HD mutation. Total SOD, and Cu/ZnSOD activities increased in young transgenic mice, but decreased in older (35 week) mice. We consider that the increased enzyme activity represents a compensatory mechanism to protect cells from free radical-induced damage, but the system becomes insufficient in older animals. Major decreases in SOD activity were also observed both after quinolinic acid and 3-nitropropionic acid intrastriatal injections. The present results indicate that in both types of HD models striatal oxidative damage occurs, and that it is associated with alterations in the cellular antioxidant system.  相似文献   

9.
The nutritional efficiency of quinolinic acid as a substitute for nicotinic acid was investigated using weanling rats Of the Sprague Dawley strain (3-weeks old) fed a nicotinic acid-free, tryptophan-limited diet containing various amounts of nicotinic acid or quinolinic acid. Judging from the growth response, food efficiency ratio, levels of NAD activity in the blood, liver, brain and upper small intestine, and urinary excretion of niacin we have concluded that exogenous quinolinic acid is approximately 1/9 as active as nicotinic acid. As many foods contain quinolinic acid, dietary quinolinic acid cannot be ignored from the standpoint of tryptophan and nicotinic acid replacement.  相似文献   

10.
In patients with Huntington's disease (HD), the proteolytic activity of the ubiquitin proteasome system (UPS) is reduced in the brain and other tissues. The pathological hallmark of HD is the intraneuronal nuclear protein aggregates of mutant huntingtin. We determined how to enhance UPS function and influence catalytic protein degradation and cell survival in HD. Proteasome activators involved in either the ubiquitinated or the non-ubiquitinated proteolysis were overexpressed in HD patients' skin fibroblasts or mutant huntingtin-expressing striatal neurons. Following compromise of the UPS, overexpression of the proteasome activator subunit PA28gamma, but not subunit S5a, recovered proteasome function in the HD cells. PA28gamma also improved cell viability in mutant huntingtin-expressing striatal neurons exposed to pathological stressors, such as the excitotoxin quinolinic acid and the reversible proteasome inhibitor MG132. These results demonstrate the specific functional enhancements of the UPS that can provide neuroprotection in HD cells.  相似文献   

11.
Accumulation of the neurotoxin quinolinic acid within the brain occurs in a broad spectrum of patients with inflammatory neurologic disease and may be of neuropathologic significance. The production of quinolinic acid was postulated to reflect local induction of indoleamine 2,3-dioxygenase by cytokines in reactive cells and inflammatory cell infiltrates within the central nervous system. To test this hypothesis, macaques received an intraspinal injection of poliovirus as a model of localized inflammatory neurologic disease. Seventeen days later, spinal cord indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations in spinal cord and cerebrospinal fluid were both increased in proportion to the degree of inflammatory responses and neurologic damage in the spinal cord, as well as the severity of motor paralysis. The absolute concentrations of quinolinic acid achieved in spinal cord and cerebrospinal fluid exceeded levels reported to kill spinal cord neurons in vitro. Smaller increases in indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations also occurred in parietal cortex, a poliovirus target area. In frontal cortex, which is not a target for poliovirus, indoleamine 2,3-dioxygenase was not affected. A monoclonal antibody to human indoleamine 2,3-dioxygenase was used to visualize indoleamine 2,3-dioxygenase predominantly in grey matter of poliovirus-infected spinal cord, in conjunction with local inflammatory lesions. Macrophage/monocytes in vitro synthesized [13C6]quinolinic acid from [13C6]L-tryptophan, particularly when stimulated by interferon-gamma. Spinal cord slices from poliovirus-inoculated macaques in vitro also converted [13C6]L-tryptophan to [13C6]quinolinic acid. We conclude that local synthesis of quinolinic acid from L-tryptophan within the central nervous system follows the induction of indoleamine-2,3-dioxygenase, particularly within macrophage/microglia. In view of this link between immune stimulation and the synthesis of neurotoxic amounts of quinolinic acid, we propose that attenuation of local inflammation, strategies to reduce the synthesis of neuroactive kynurenine pathway metabolites, or drugs that interfere with the neurotoxicity of quinolinic acid offer new approaches to therapy in inflammatory neurologic disease.  相似文献   

12.
Recent evidence suggests that there may be overactivation of the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors in Huntington's disease (HD). Tryptophan metabolism by the kynurenine pathway produces both quinolinic acid, an NMDA receptor agonist, and kynurenic acid, an NMDA receptor antagonist. In the present study, multiple components of the tyrosine and tryptophan metabolic pathways were quantified in postmortem putamen of 35 control and 30 HD patients, using HPLC with 16-sensor electrochemical detection. Consistent with previous reports in HD putamen, there were significant increases in 5-hydroxyindoleacetic acid, 5-hydroxytryptophan, and serotonin concentrations. Within the kynurenine pathway, the ratio of kynurenine to kynurenic acid was significantly (p less than 0.01) increased twofold in HD patients as compared with controls, consistent with reduced formation of kynurenic acid in HD. CSF concentrations of kynurenic acid were significantly reduced in HD patients as compared with controls and patients with other neurologic diseases. Because kynurenic acid is an endogenous inhibitor of excitatory neurotransmission and can block excitotoxic degeneration in vivo, a relative deficiency of this compound could directly contribute to neuronal degeneration in HD.  相似文献   

13.
Dopamine (DA), a major neurotransmitter used in the striatum, is involved in movement disorders such as Parkinson's disease and Huntington's chorea. With the loss of neurons in the striatum of patients with Huntington's disease (HD), there is an associated downregulation of DA receptors, which may alter DA-mediated responses. In the present study, DA-mediated electrophysiological depression was studied in animals with quinolinic acid (QA)-induced experimental HD. QA was directly applied to the right striatum of adult female Sprague-Dawley rats. Animals receiving QA developed ipsilateral rotation after the application of apomorphine. Fetal striatal tissue transplants grafted 1 month after lesioning attenuated apomorphine-induced rotation. Six months after lesioning, the animals were anesthetized with urethane for electrophysiological study. DA, applied directly to neurons by pressure microejection, inhibited spontaneous single-unit activity in the striatal neurons of nonlesioned, lesioned and lesioned/grafted rats. QA lesioning reduced responses to DA in the striatal neurons. The dose of DA required to inhibit striatal neuron activity in the lesioned rats was significantly increased compared to that in the nonlesioned rats. Transplantation of fetal striatal tissue restored the electrophysiological sensitivity to DA in the lesioned striatum. The dose of DA used to suppress striatal neuron activity was reduced after grafting. Immunohistostaining showed survival of gamma-aminobutyric acid neurons at the graft site. Tyrosine hydroxylase-positive terminals were found innervating the striatal grafts. In conclusion, our data demonstrate that fetal striatal transplants restore electrophysiological sensitivity to DA in the lesioned striatum of animals with experimental HD.  相似文献   

14.
E Bonilla  A L Prasad  A Arrieta 《Life sciences》1988,42(11):1153-1158
We studied the levels of free amino acids in putamen and Brodmann's area 10 of 12 patients who died with Huntington's disease and 13 non-neurologic controls. GABA, glutamate and alpha-amino-n-butyric acid concentrations were found to be reduced in putamen of Huntington's disease patients. In Brodmann's area 10 the levels of glutamate, histidine and lysine were decreased, but the content of aspartate, GABA, glycine, serine and taurine was increased in the same group of patients.  相似文献   

15.
Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntington's disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.  相似文献   

16.
There is substantial evidence that abnormal concentrations of oxidised tryptophan metabolites, produced via the kynurenine pathway, contribute to progressive neurodegeneration in Huntington's disease. We have now examined the blood levels of these metabolites in patients at different stages of Huntington's disease, assessed both in terms of clinical disease severity and numbers of CAG repeats. Close relatives of the patients were included in the study as well as unrelated healthy controls. Levels of lipid peroxidation products, the pro-inflammatory cytokine interleukin (IL)-23 and the soluble human leucocyte antigen-G (sHLA-G) were also measured. There were lower levels of tryptophan and a higher kynurenine : tryptophan ratio, indicating activation of indoleamine-2,3-dioxygenase, in the most severely affected group of patients, with increased levels of IL-23 and sHLA-G. Marked correlations were noted between IL-23 and the patient severity group, anthranilic acid levels and the number of CAG repeats, and between anthranilic acid and IL-23, supporting our previous evidence of a relationship between anthranilic acid and inflammatory status. Tryptophan was negatively correlated with symptom severity and number of CAG repeats, and positively correlated with sHLA-G. The results support the proposal that tryptophan metabolism along the kynurenine pathway in Huntington's disease is related to the degree of genetic abnormality, to clinical disease severity and to aspects of immunopathogenesis.  相似文献   

17.
Excitotoxicity has been involved in the pathogenesis of several neurodegenerative disorders. Using intrastriatal quinolinic acid (QUIN) injection as an animal model of Huntington's disease, we attempt to identify the neurotransmitter phenotype of striatal projection neurons protected by neurturin (NRTN). Control or NRTN-secreting cell lines were grafted in the striatum before QUIN injection and striatal projection neurons were examined by retrograde Fluorogold labeling and in situ hybridization. Intrastriatal grafting of NRTN-secreting cell line selectively prevented the loss of striatopallidal neurons and also the decrease in the mRNA levels for their markers (glutamic acid decarboxylase 67 and preproenkephalin) induced by QUIN, without affecting striatonigral neurons. Thus, our findings show that NRTN is a selective neuroprotective factor for striatopallidal neurons, suggesting that it might be a candidate for the treatment of movement disorders in which this neuronal population is affected.  相似文献   

18.
Adenosine A2A receptor (A2AR) antagonism attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and quinolinic acid-induced excitotoxicity in the neostriatum. As A2ARs are enriched in striatum, we investigated the effect of genetic and pharmacological A2A inactivation on striatal damage produced by the mitochondrial complex II inhibitor 3-nitropriopionic acid (3-NP). 3-NP was administered to A2AR knockout (KO) and wild-type (WT) littermate mice over 5 days. Bilateral striatal lesions were analyzed from serial brain tissue sections. Whereas all of the 3-NP-treated WT mice (C57BL/6 genetic background) had bilateral striatal lesions, only one of eight of the 3-NP-treated A2AR KO mice had detectable striatal lesions. Similar attenuation of 3-NP-induced striatal damage was observed in A2AR KO mice in a 129-Steel background. In addition, the effect of pharmacological antagonism on 3-NP-induced striatal neurotoxicity was tested by pre-treatment of C57Bl/6 mice with the A2AR antagonist 8-(3-chlorostyryl) caffeine (CSC). Although bilateral striatal lesions were observed in all mice treated either with 3-NP alone or 3-NP plus vehicle, there were no demonstrable striatal lesions in mice treated with CSC (5 mg/kg) plus 3-NP and in five of six mice treated with CSC (20 mg/kg) plus 3-NP. We conclude that both genetic and pharmacological inactivation of the A2AR attenuates striatal neurotoxicity produced by 3-NP. Since the clinical and neuropathological features of 3-NP-induced striatal damage resemble those observed in Huntington's disease, the results suggest that A2AR antagonism may be a potential therapeutic strategy in Huntington's disease patients.  相似文献   

19.
The neurochemical profile of the striatum of R6/2 Huntington's disease mice was examined at different stages of pathogenesis using in vivo(1)H NMR spectroscopy at 9.4 T. Between 8 and 12 weeks, R6/2 mice exhibited distinct changes in a set of 17 quantifiable metabolites compared with littermate controls. Concentrations of creatine, glycerophosphorylcholine, glutamine and glutathione increased and N-acetylaspartate decreased at 8 weeks. By 12 weeks, concentrations of phosphocreatine, taurine, ascorbate, glutamate, and myo-inositol increased and phophorylethanolamine decreased. These metabolic changes probably reflected multiple processes, including compensatory processes to maintain homeostasis, active at different stages in the development of HD. The observed changes in concentrations suggested impairment of neurotransmission, neuronal integrity and energy demand, and increased membrane breakdown, gliosis, and osmotic and oxidative stress. Comparisons between metabolite concentrations from individual animals clearly distinguished HD transgenics from non-diseased littermates and identified possible markers of disease progression. Metabolic changes in R6/2 striata were distinctly different from those observed previously in the quinolinic acid and 3NP models of HD. Longitudinal monitoring of changes in these metabolites may provide quantifiable measures of disease progression and treatment effects in both mouse models of HD and patients.  相似文献   

20.
Neuronal loss in Huntington's disease (HD) is seen first in the neostriatum. It has been suggested that impaired metabolism underlies this degeneration, as striatal vulnerability to excitotoxicity is increased by metabolic compromise. At 12 weeks of age, a transgenic mouse carrying the HD mutation (R6/2 line) has been shown to have an increased vulnerability to the mitochondrial toxin 3-nitropropionic acid (3-NP). However, in contrast, younger R6/2 mice appear to be less vulnerable than wild-type (WT) mice to the excitotoxins kainic acid and quinolinic acid (QA). In this study, we examine the possibility that the sensitivity of R6/2 mice to 3-NP might be age dependent. We treated young, symptomatic R6/2 mice with 3-NP and found that despite their progressive neurological phenotype, they were not more susceptible to 3-NP intoxication than their WT littermates. Further, fewer R6/2 than WT mice developed striatal lesions. We suggest that compensatory mechanisms exist in the R6/2 mouse brain that protect it against the toxic effect of the transgene and coincidentally protect against exogenous toxins such as 3-NP, QA, and kainic acid. The existence of similar compensatory mechanisms may explain why, in humans, HD is a late-onset disorder, despite early expression of the genetic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号