首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding diel patterns in sea urchin activity is important when assessing sea urchin populations and when interpreting their interactions with predators. Here we employ a combination of surveys and a non-invasive tethering technique to examine these patterns in an intact coral reef system on the Great Barrier Reef (GBR). We also assess local scale variation in relative diurnal predation pressure. Surveys revealed that sea urchins were active and exposed at night. Echinometra mathaei and Echinothrix calamaris were the most abundant species with significantly higher night densities (0.21 and 0.03 ind. m−2, respectively), than daytime densities (0.05 and 0.001, respectively). Bioassays revealed that exposed adult E. mathaei (the most abundant sea urchin species) were 30.8 times more likely to be eaten during the day than at night when controlling for sites. This observation concurs with widely held assumptions that nocturnal activity is a risk-related adaptive response to diurnal predation pressure. Despite relatively intact predator communities on the GBR, potential predation pressure on diurnally exposed E. mathaei assays was variable at a local scale and the biomass of potential fish predators at each site was a poor predictive measure of this variation. Patterns in predation appear to be more complex and variable than we may have assumed.  相似文献   

2.
3.
Large-scale bleaching of corals on the Great Barrier Reef   总被引:10,自引:10,他引:10  
 The Great Barrier Reef (GBR) experienced its most intensive and extensive coral bleaching event on record in early 1998. Mild bleaching commenced in late January and intensified by late February/early March 1998. Broad-scale aerial surveys conducted of 654 reefs (∼23% of reefs on the GBR) in March and April 1998, showed that 87% of inshore reefs were bleached at least to some extent (>1% of coral cover) compared to 28% of offshore (mid- and outer-shelf) reefs. Of inshore reefs 67% had high levels of bleaching (>10% of coral) and 25% of inshore reefs had extreme levels of bleaching (>60% of coral). Fewer offshore reefs (14%) showed high levels of bleaching while none showed extreme levels of bleaching. Ground-truth surveys of 23 reefs, which experienced bleaching in intensities ranging from none to extreme, showed that the aerial survey data are likely to be underestimates of the true extent and intensity of bleaching on the GBR. The primary cause of this bleaching event is likely to be elevated sea temperature and solar radiation, exacerbated by lowered salinity on inshore and some offshore reefs in the central GBR. Accepted: 30 July 1998  相似文献   

4.
Epibenthic fish larvae near Lizard Island in the Great Barrier Reef Lagoon were sampled with a plankton sled during daylight in November 1981 and January–February 1982. Abundance in the epibenthos was highly variable, and although many types of larvae were present, few were concentrated there relative to the water column. Among those taxa concentrated in the epibenthos, abundances were low and variances were high. Larvae of bregmacerotids, callionymids, clupeids, monacanthids, pinguipedids, platycephalids, pseudochromids, and especially schindleriids, leiognathids and terapontids were concentrated in the epibenthos. Few reef fish larvae were epibenthic. There was some evidence of diel and ontogenetic movements into and out of the epibenthos. Our limited sampling indicates that conventional midwater plankton sampling is adequate for most fish larvae found in the Lizard Island area, but for the larvae of the above ten families, this could produce large underestimates of abundance.  相似文献   

5.
6.
Halimeda bioherms of the northern Great Barrier Reef   总被引:2,自引:0,他引:2  
The reefless tract directly behind the ribbon reefs on the outer shelf off Cooktown supports a luxuriant growth of Halimeda that, during the Holocene, has developed into bioherms. These mounded biodies of unconsolidated sediment have formed banks that vary in height between 2 and 20 m. Combined shallow, high-resolution seismic reflection profiles and side-scan sonar have diferentiated three areas of biohermal complexes behind the ribbon reefs of Cooktown. Observations by SCUBA and submersible plus the sedimentology of the bioherms indicate that they are in situ accumulations. Evidence from dating of cores suggests that the Halimeda bioherms began to grow about 10 000 years B.P. and their growth has continued to the present time, even though their tops are presently restricted to a depth of -20 m. It is suggested that the origin and morphology of the bioherms are related to a specific hydrodynamic phenomenon, involving jets of nutrient-rich, upwelled oceanic water intruding onto the outer shelf via the narrow passes between the ribbon reefs, and forming eddies behind the ribbons.  相似文献   

7.
Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins (Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7?min) than B. undulatus (5.2?min). Balistoides viridescens also successfully preyed on 70?% of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1?%, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3?min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.  相似文献   

8.
Coral Reefs - Crown-of-thorns starfish (COTS) outbreaks are a globally significant driver of coral mortality in the Indo-Pacific and work synergistically with other disturbances. We argue that our...  相似文献   

9.
Haapkylä  J.  Melbourne-Thomas  J.  Flavell  M.  Willis  B. L. 《Coral reefs (Online)》2010,29(4):1035-1045
Despite increasing research effort on coral diseases, little is known about factors driving disease dynamics on the Great Barrier Reef (GBR). This is the first study to investigate the temporal patterns of coral disease prevalence and potential drivers of disease around Heron Island, in the southern Capricorn Bunker sector of the GBR. Surveys were conducted in two austral summers and three winters between November 2007 and August 2009 on six sites around the island. Six diseases were detected: brown band syndrome (BrB), growth anomalies (GA), ulcerative white spots (UWS), white syndrome (WS), skeletal eroding band disease (SEB) and black band disease (BBD). The lowest overall mean disease prevalence was 1.87 ± 0.75% (mean ± SE) in November 2007 and the highest 4.22 ± 1.72% in August 2008. There was evidence of seasonality for two diseases: BrB and UWS. This is the first study to report a higher prevalence of BrB in the winter. BrB had a prevalence of 3.29 ± 0.58% in August 2008 and 1.53 ± 0.28% in August 2009, while UWS was the most common syndrome in the summer with a prevalence of 1.12 ± 0.31% in November 2007 and 2.67 ± 0.52% prevalence in January 2008. The prevalence of GAs and SEB did not depend on the season, although the prevalence of GAs increased throughout the study period. WS had a slightly higher prevalence in the summer, but its overall prevalence was low (<0.5%). Sites with high abundance of staghorn Acropora and Montipora were characterised by the highest disease prevalence (12% of Acropora and 3.3% of Montipora species were diseased respectively). These results highlight the correlations between coral disease prevalence, seasonally varying environmental parameters and coral community composition. Given that diseases are likely to reduce the resilience of corals, seasonal patterns in disease prevalence deserve further research.  相似文献   

10.
The coral genus Pocillopora is one of the few to include some species that broadcast spawn gametes and some species that brood larvae, although reports of reproductive mode and timing vary within and among species across their range. Notably, the ubiquitous Pocillopora damicornis has been described as both a brooder and spawner, although evidence of broadcast spawning is rare. Here, we report observations of broadcast-spawning in four species of Pocillopora on the Great Barrier Reef (GBR), including P. damicornis. All species spawned predictably during the early morning, two days following the full moon, and spawning was observed in multiple months over the summer period (November to February). Eggs and sperm were free-spawned concurrently. Eggs were negatively buoyant and contained Symbiodinium. This newfound knowledge on the mode, timing and regularity of broadcast spawning in Pocillopora spp. on the GBR brings us one step closer to elucidating the complex reproductive ecology of these species.  相似文献   

11.
Herbivory is widely accepted as a key process determining the structure and resilience of coral reefs, with regional reductions in herbivores often being related to shifts from dominance by coral to leathery macroalgae. The removal of leathery macroalgae may therefore be viewed as a critical process on coral reefs. However, few studies have examined this process beyond a within-reef scale. Here, browsing activity was examined across the entire Great Barrier Reef shelf using bioassays of the leathery macroalga Sargassum to directly quantify algal removal. The assays revealed marked cross-shelf variation in browsing intensity, with the highest rates recorded on mid-shelf reefs (55.2–79.9% day−1) and decreasing significantly on inner- (10.8–17.0% day−1) and outer-shelf (10.1–10.4% day−1) reefs. Surprisingly, the variation in browsing intensity was not directly related to estimates of macroalgal browser biomass; rather, it appears to be shaped primarily by the local environment and behaviour of the component species. Removal rates across the inner- and mid-shelf reefs appear to be related to the attractiveness of the assays relative to the resident algal communities. Controlling for the influence of the resident algal communities revealed a positive relationship between removal rates and the biomass of a single macroalgal browsing species, Naso unicornis. In contrast, the low removal rates on the outer-shelf reefs displayed no relationship to algal or herbivore communities and appeared to reflect a negative behavioural response by the resident fishes to a novel, or unfamiliar, alga. These findings not only highlight the complexities of the relationship between fish presence and ecological function, but also the value of examining ecological processes across broader spatial scales.  相似文献   

12.
Dynamics of phytoplankton in the Great Barrier Reef Lagoon   总被引:1,自引:0,他引:1  
The characteristics of the phytoplankton crop in the centralregion of the Great Barrier Reef were analyzed through two annualcycles together with basic oceanographic parameters. Chlorophylla standing crop and primary production were size fractionatedinto nanoplankton and microplankton components. Community compositionwas determined using the Utermöhl settling technique andcommunity diversities estimated by the Shannon-Weaver equation.The data and analysis are the most comprehensive in existencefor the region, and the first detailed study since the 1928–29Great Barrier Reef expedition. A marked seasonal cycle was identified,contrary to most assumptions, closely associated with precipitationpatterns and nutrients introduced by land drainage. The regionwould rank as mesotrophic with some eutrophic areas in the innerreaches of the Lagoon. Oscillatoria spp. accounted for a largefraction of the majority of phytoplankton maxima and were inverselyrelated to diatom crop densities even under conditions favoringdiatom growth. Microplankton crop species diversities usuallydecreased during extended Oscillatoria blooms. The reduced diversitypersisted after the bloom suggesting that Oscillatoria spp.were the source of extracellular metabolites and/or decompositionproducts adversely influencing diatom microplankton.  相似文献   

13.
The common herbivorous macroinvertebrates on reef flats of the central Great Barrier Reef (GBR) were, in order of abundance: gastropod molluscs (Turbo and Trochus spp.); pagurid crabs; and the starfish, Linckia laevigata. The density of macroinvertebrates on Davies Reef was lowest in the thick-turf habitats at the windward reef-crest (0.6–0.9 m–2) compared with 3.1 to 5.2 m–2 elsewhere on the reef flat. Invertebrate grazer densities were similar on mid-shelf reef flats (mean: 2.3–3.6 m–2) and significantly lower on outer-shelf reefs (0.3–1.0 m–2). The ingestion rate of Turbo chrysostomus, the most abundant macroinvertebrate species, was derived from (a) faecal production and food absorption efficiency, (b) comparison of algal biomass on grazed and ungrazed natural substrata and (c) gut-filling rate and feeding periodicity in field populations. The ingestion rate of Trochus pyramis, the most common trochid and an abundant component of the macroinvertebrate fauna, was also estimated using (a). This gastropod fed continuously, whereas T. chrysostomus showed a distinct nocturnal feeding periodicity. T. chrysostomus and T. pyramis ingested daily means of 35 and 54 mgC animal-1, respectively. Total gastropod grazing rates (mgC m–2d-1 in the field ranged from 11 in a thick-turf, reef-crest habitat to 144 on the open-grazed main flat. Grazing by gastropods accounted for between 0.3 and 8% of the net production of benthic algal food resources, depending on location on the reef flat. Across the whole reef flat the mean (areally-weighted) gastropod grazing rate was 6% of net production. A comparison of the relative roles of different types of grazers led to the conclusion that fishes are likely to have the greatest overall trophic impact on reefs of the central GBR. Even where macroinvertebrates are most abundant on reef flats, the yield from benthic algal communities to macroinvertebrates is estimated to be only one third of that due to fishes.Contribution no. 471 from the Australian Institute of Marine Science  相似文献   

14.
The deposition and cycling of carbon and nitrogen in carbonate sediments located between coral reefs on the northern and central sections of the Great Barrier Reef were examined. Rates of mass sediment accumulation ranged from 1.9 kg m−2 year−1 (inshore reefs) to 2.1–4.9 kg m−2 year−1 (between mid-shelf reefs); sedimentation was minimal off outer-shelf reefs. Rates of total organic carbon decomposition ranged from 1.7 to 11.4 mol C m−2 year−1 and total nitrogen mineralization ranged from 77 to 438 mmol N m−2 year−1, declining significantly with distance from land. Sediment organic matter was highly reactive, with mineralization efficiencies ranging from 81 to 99% for organic carbon and 64–100% for nitrogen, with little C and N burial. There was no evidence of carbonate dissolution/precipitation in short-term incubation experiments. Rates of sulfate reduction (range 0–3.4 mmol S m−2 day−1) and methane release (range 0–12.8 μmol CH4 m−2 day−1) were minor or modest pathways of carbon decomposition. Aerobic respiration, estimated by difference between total O2 consumption and the sum of the other pathways, accounted for 55–98% of total carbon mineralization. Rates of ammonification ranged from 150 to 1,725 μmol NH4 m−2 day−1, sufficient to support high rates of denitrification (range 30–2,235 μmol N2 m−2 day−1). N2O release was not detected and rates of NH4 + and NO2 + NO3 efflux were low, indicating that most mineralized N was denitrified. The percentage of total N input removed via denitrification averaged ≈75% (range 28–100%) with little regenerated N available for primary producers. Inter-reef environments are therefore significant sites of energy and nutrient flow, especially in spatially complex reef matrices such as the Great Barrier Reef.  相似文献   

15.
The benthic communities of the Great Barrier Reef (GBR) have been characterized as a mosaic with patches at scales of tens to hundreds of kilometres formed by clusters of reefs with comparable environmental settings and histories of disturbance. We use data sets of changes in cover of abundant benthic organisms to examine the relationship between community composition and the dynamics of this mosaic. Our data were compiled from seven annual video surveys of permanent transects on the north-east flanks of up to 52 reefs at different shelf positions throughout most of the GBR. Classification analysis of these data sets identified three distinct groups of reefs, the first dominated by poritid hard corals and alcyoniid soft corals, the second by hard corals of the genus Acropora, and the third by xeniid soft corals. These groups underwent different amounts of change in cover during the period of our study. As acroporan corals are fast growing but susceptible to mortality due to predators and wave action, the group of reefs dominated by this genus displayed rapid rates of growth and loss of cover. In contrast, cover in the remaining groups changed very slowly or remained stable. Some evidence suggests that competition for space may limit growth of acroporan corals and thus rates of change in the group dominated by xeniid soft corals. These contrasting patterns imply that susceptibility to, and recovery from, disturbances such as cyclones, predators, and bleaching events will differ among these groups of reefs.  相似文献   

16.
Fish larvae from horizontal plankton tows along a single transect near outer ribbon reefs of the Great Barrier Reef in spring 1979 and summer 1980 had persistent distributional patterns. Larvae were identified to family and divided into young (preflexion) and old (postflexion) larvae, thus giving 28 taxa abundant enough for analysis. Non-uniform larval distributions were found for 81% of the 16 reef fish taxa with non-pelagic eggs, but for only 17% of the six reef fish taxa with pelagic eggs. Most differences in larval concentration were between the lagoonal and seaward sides of the reef. Only tripterygiid larvae had highest concentration just seaward of the reef, while larvae of 12 reef and three oceanic fish taxa occurred in highest concentrations on the lagoonal side of the reef. In five taxa of reef fishes, higher larval concentrations were found in the lagoonal backreef compared with the mid-lagoon habitat; but the reverse was not found in any taxon. Eleven taxa had indeterminate distributions, (i.e. no difference in concentration between stations). Mechanisms responsible for the distribution remain unknown, but we suggest that the view which considers fish larvae to be passively-drifting particles is unjustified without more information on larval behaviour.  相似文献   

17.
18.
Herbivorous fishes are a key functional group on coral reefs. These fishes are central to the capacity of reefs to resist phase shifts and regenerate after disturbance. Despite this importance few studies have quantified the direct impact of these fishes on coral reefs. In this study the roles of parrotfishes, a ubiquitous group of herbivorous fishes, were examined on reefs in the northern Great Barrier Reef. The distribution of 24 species of parrotfish was quantified on three reefs in each of three cross-shelf regions. Functional roles (grazing, erosion, coral predation and sediment reworking) were calculated as the product of fish density, bite area or volume, bite rate, and the proportion of bites taken from various substrata. Inner-shelf reefs supported high densities but low biomass of parrotfishes, with high rates of grazing and sediment reworking. In contrast, outer-shelf reefs were characterised by low densities and high biomass of parrotfish, with high rates of erosion and coral predation. Mid-shelf reefs displayed moderate levels of all roles examined. The majority of this variation in functional roles was attributable to just two species. Despite being rare, Bolbometopon muricatum, the largest parrotfish species, accounted for 87.5% of the erosion and 99.5% of the coral predation on outer-shelf reefs. B. muricatum displayed little evidence of selectivity of feeding, with most substrata being consumed in proportion to their availability. In contrast, the high density of Scarus rivulatus accounted for over 70% of the total grazing and sediment reworking on inner-shelf reefs. This marked variation in the roles of parrotfishes across the continental shelf suggests that each shelf system is shaped by fundamentally different processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号