首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tanaka M  Young RJ 《Biomacromolecules》2006,7(9):2575-2582
Molecular orientation distributions in the crystalline and amorphous regions of a biaxially oriented poly(L-lactic acid) film were analyzed fully by polarized Raman spectroscopy. Raman bands at 926 and 875 cm(-1) were chosen for the determination of the most probable molecular orientation distribution functions for the crystalline and amorphous regions in the film. It was revealed that the PLLA molecules were oriented biaxially in both the crystalline and amorphous regions. The orientation distribution normal to the film surface was found to be broader in the amorphous regions than in the crystalline regions. Furthermore, a predominant unidirectional molecular orientation was observed in the crystalline regions, whereas the molecular orientation distribution in the amorphous regions was isotropic in the plane parallel to the film surface. The different behavior of the crystalline and amorphous regions suggests that each region underwent different deformation mechanisms during the film formation.  相似文献   

2.
The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either [1-13C]glycine or [2-13C]glycine, as more than 90% of the glycines of the keratins are located in the end domains. Although cross-labeling to seryl residues was observed, the proportion of serine located in the end domains is nearly the same as that for glycine. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic, with average correlation times distributed over the range of 0.2-20 ns. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-[1-13C]leucine, L-[2H10]leucine, or L-[2,3,3-2H3]leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mani R  Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2004,43(43):13839-13848
The interaction of a beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), with various lipid membranes is investigated by (31)P, (2)H, and (13)C solid-state NMR. Mixed lipid bilayers containing anionic lipids and cholesterol are used to mimic the bacterial and mammalian cell membranes, respectively. (31)P and (2)H spectra of macroscopically oriented samples show that PG-1 induces the formation of an isotropic phase in anionic bilayers containing phosphatidylglycerol. Two-dimensional (31)P exchange experiments indicate that these isotropic lipids are significantly separate from the residual oriented lamellar bilayers, ruling out toroidal pores as the cause for the isotropic signal. (1)H spin diffusion experiments show that PG-1 is not exclusively bound to the isotropic phase but is also present in the residual oriented lamellar bilayers. This dynamic and morphological heterogeneity of the anionic membranes induced by PG-1 is supported by the fact that (13)C T(2) relaxation times measured under cross polarization and direct polarization conditions differ significantly. In contrast to the anionic membrane, the zwitterionic phosphatidylcholine (PC) membrane does not form an isotropic phase in the presence of PG-1 but shows significant orientational disorder. The addition of cholesterol to the PC bilayer significantly reduces this orientational disorder. The (13)C T(2) relaxation times of the PC lipids in the presence of both cholesterol and PG-1 suggest that the peptide may decrease the dynamic heterogeneity of the cholesterol-containing membrane. The observed selective interaction of PG-1 with different lipid membranes is consistent with its biological function and may be caused by its strong cationic and amphipathic structure.  相似文献   

4.
For the first time, 15N solid-state NMR experiments were conducted on wild-type phospholamban (WT-PLB) embedded inside mechanically oriented phospholipid bilayers to investigate the topology of its cytoplasmic and transmembrane domains. 15N solid-state NMR spectra of site-specific 15N-labeled WT-PLB indicate that the transmembrane domain has a tilt angle of 13 degrees+/-6 degrees with respect to the POPC (1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine) bilayer normal and that the cytoplasmic domain of WT-PLB lies on the surface of the phospholipid bilayers. Comparable results were obtained from site-specific 15N-labeled WT-PLB embedded inside DOPC/DOPE (1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) mechanically oriented phospholipids' bilayers. The new NMR data support a pinwheel geometry of WT-PLB, but disagree with a bellflower structure in micelles, and indicate that the orientation of the cytoplasmic domain of the WT-PLB is similar to that reported for the monomeric AFA-PLB mutant.  相似文献   

5.
Sphingomyelin (SM) is a common sphingolipid in mammalian membranes and is known to be substantially involved in cellular events such as the formation of lipid rafts. Despite its biological significance, conformation of SM in a membrane environment remains unclear because the noncrystalline property and anisotropic environment of lipid bilayers hampers the application of X-ray crystallography and NMR measurements. In this study, to elucidate the conformation of SM in membranes, we utilized bicelles as a substitute for a lipid bilayer membrane. First, we demonstrated through (31)P NMR, (2)H NMR, and dynamic light scattering experiments that SM forms both oriented and isotropic bicelles by changing the ratio of SM/dihexanoyl phosphatidylcholine. Then, we determined the conformation of SM in isotropic bicelles on the basis of coupling constants and NOE correlations in (1)H NMR and found that the C2-C6 and amide groups of SM take a relatively rigid conformation in bicelles.  相似文献   

6.
The phase behavior of a 1-[(2)H(35)]-stearoyl-rac-glycerol ([(2)H(35)]-MSG)/dicetylphosphate (DCP) mixture and its interaction with beta-lactoglobulin and lysozyme were studied by (2)H and (31)P nuclear magnetic resonance (NMR). The behavior of the lipids was monitored by using deuterium-labeled [(2)H(35)]-MSG as a selective probe for (2)H NMR and DCP for (31)P NMR. Both (2)H and (31)P NMR spectra exhibit characteristic features representative of different phases. In the lamellar phases, (31)P NMR spectra of DCP are different from the spectra of natural phospholipids, which is attributable to differences in the intramolecular motions and the orientation of the shielding tensor of DCP compared with phospholipids. The presence of the negatively charged amphiphile DCP has a large effect on the phase behavior of [(2)H(35)]-MSG. At low temperature, the presence of DCP inhibits crystallization of the gel phase into the coagel. Upon increasing the temperature, the gel phase of [(2)H(35)]-MSG transforms in the liquid-crystalline lamellar phase. In the presence of DCP, the gel phase directly transforms into an isotropic phase. The negatively charged beta-lactoglobulin and the positively charged lysozyme completely neutralize the destabilizing effect of DCP on the monoglyceride liquid-crystalline phase and they even stabilize this phase. Without DCP the proteins do not seem to interact with the monoglyceride. These results suggest that interaction is facilitated by electrostatic interactions between the negatively charged DCP and positively charged residues in the proteins. In addition, the nonbilayer-forming DCP creates insertion sites for proteins in the bilayer.  相似文献   

7.
A S Ulrich  M P Heyn  A Watts 《Biochemistry》1992,31(42):10390-10399
The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.  相似文献   

8.
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.  相似文献   

9.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend cirtically on the homogeneity and the degree unsaturation of the phospholipids.  相似文献   

10.
The orientation and mobility of an N-(iodoacetyl)-(1-naphtyl-5-sulpho-ethylenediamine) fluorescent probe (1.5-IAEDANS) specifically bound to Cys-374 of actin in ghost muscle fibers isolated from fast and slow rat muscles were studied by polarized fluorimetry in the absence and presence of a myosin subfragment-1 (S1) in intact rats and in animals with a gradual (2–5 weeks) reduction in the level of thyroid hormones (development of hypothyroidism). The binding of S1 to F-actin of ghost muscle fibers was shown to induce changes in the orientation of dipoles of the 1.5-IAEDANS fluorescent probe and in the relative amount of the randomly oriented fluorophores that indicates changes in actin subdomain-1 orientation and mobility resulting from formation of its strong binding with S1. This effect is markedly inhibited by the development of hypothyroidism. The maximal effect of hypothyroidism is observed after 34 days of the development of the disease. It is suggested that the change in the thyroid status in muscle inhibits the ability of F-actin to form strong binding with myosin, which is essential for the generation of force.  相似文献   

11.
We have investigated the feasibility of the various possible magnetic resonance probes of lipids which form non-bilayer phases. As a model system we have used equimolar mixtures of phosphatidylethanolamine (PE) and cholesterol, which exhibit a thermotropic transition from a bilayer to a hexagonal phase. Variable temperature electron spin resonance (ESR) spin probe spectra were obtained using random dispersion and oriented lipid systems. Simultations of the ESR spectra were performed in order to aid in the interpretation of the experimental results for the oriented system. 31P- and 2H-nuclear magnetic resonance (NMR) studies were carried out using a deuterated PE. The ESR spin probes in the random dispersions show essentially no effect attributable to the phase transition. However, there are large, reversible effects in the temperature-dependent behaviour for the oriented system. The orientation dependence of the spectra above the transition temperature indicate that the hexagonal phase lipids may spontaneously assume a macroscopic organization on a flat surface. We find, however, that such an organization cannot be unambiguously assigned from the ESR spin probe spectra, and point out a potential difficulty in the interpretation of spin probe spectra in oriented systems. In contrast, the 2H-NMR method provides a reliable monitor of the phase transformation. Taken together, the 2H and 31P data indicate that the structure of the headgroup in PE is quite similar in both the bilayer and hexagonal phase. 2H-NMR should be very useful in probing the structural and dynamic characteristics of lipids in non-bilayer phases.  相似文献   

12.
The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid-protein layer at the alveolar air-water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B(8-25)) and C-terminal (SP-B(63-78)) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid-peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid-peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.  相似文献   

13.
Understanding the underlying mechanisms of Fc aggregation is an important prerequisite for developing stable and efficacious antibody-based therapeutics. In our study, high resolution two-dimensional nuclear magnetic resonance (NMR) was employed to probe structural changes in the IgG1 Fc. A series of (1)H-(15)N heteronuclear single-quantum correlation NMR spectra were collected between pH 2.5 and 4.7 to assess whether unfolding of C(H)2 domains precedes that of C(H)3 domains. The same pH range was subsequently screened in Fc aggregation experiments that utilized molecules of IgG1 and IgG2 subclasses with varying levels of C(H)2 glycosylation. In addition, differential scanning calorimetry data were collected over a pH range of 3-7 to assess changes in C(H)2 and C(H)3 thermostability. As a result, compelling evidence was gathered that emphasizes the importance of C(H)2 stability in determining the rate and extent of Fc aggregation. In particular, we found that Fc domains of the IgG1 subclass have a lower propensity to aggregate compared with those of the IgG2 subclass. Our data for glycosylated, partially deglycosylated, and fully deglycosylated molecules further revealed the criticality of C(H)2 glycans in modulating Fc aggregation. These findings provide important insights into the stability of Fc-based therapeutics and promote better understanding of their acid-induced aggregation process.  相似文献   

14.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend critially on the homogeneity and the degree unsaturation of the phospholipids.  相似文献   

15.
The orientation of the disaccharide headgroup of a lactose-containing lipid, 3-O-(4-O-beta-D-galactopyranosyl-beta-D-glucopyranosyl)-1,2-di-O-tetrade cyl-sn- glycerol (DTLL), relative to the surface of bilayer membranes has been determined via 2H NMR. The lactosyl headgroup is extended away from the membrane surface into the aqueous phase. The headgroup motion has axial symmetry as evidenced by the spectral line shape and order parameter tensor. 2H NMR of oriented multibilayers of DTLL confirms that the director of motional averaging is the bilayer normal. The two sugar residues have segmental order parameters S (glucose, 0.53; galactose, 0.51) which indicate that the headgroup fluctuates about the bilayer normal as a rigid unit. 2H spin-lattice relaxation times T1z for deuterons on each of the two sugar rings are similar, indicating further that there is no substantial motion about the disaccharide linkage within the headgroup. The magnitude of the relaxation times (4 ms) suggests that the rigid body motions of the headgroup are approaching the Larmor frequency; however, they increase with increasing temperature, indicating that the motions are rapid enough to be in the fast motional regime (omega o2 tau c2 less than 1). The conformation about the galactose-glucose intersaccharide linkage, calculated from the 2H NMR data, is shown to differ substantially from those found in X-ray diffraction studies of crystalline lactose and high-resolution NMR studies of methyl lactoside in nonviscous solution. The orientations of the hydroxymethyl groups in the headgroup have been calculated from the 2H NMR data. For the galactosyl residue the data are consistent with the presence of more than one rotamer about the C5"-C6" bond which are in fast exchange on the 2H NMR time scale. The hydroxymethyl group of the glucose residue exists in two rotameric forms about the C5'-C6' bond which have relative populations of ca. 2:1 and which are in slow exchange on the 2H NMR time scale (10(-5) s). The two rotamers differ from those deduced from X-ray crystallography of crystalline lactose and 13C NMR studies of methyl lactoside in solution.  相似文献   

16.
Protein S interacts with activated protein C to play a crucial role in blood anticoagulation, and protein S deficiency is associated with increased risk of thrombosis. Despite the large volume of functional data available for this protein, no atomic resolution structure data have yet been reported. This is due at least in part to difficulties encountered when trying to produce fragments dissected from the intact protein; however, a few successful strategies have been described. In this research we have expressed a number of constructs containing protein S epidermal growth factor-like (EGF) domains 1 and 2 in Escherichia coli and Pichia pastoris. None of the proteins produced was stably folded as assayed by solution nuclear magnetic resonance spectroscopy. We therefore constructed a series of non-native protein S EGF concatemers to investigate the role of pairwise domain linkage in domain folding. Our results demonstrate that N-terminal domain linkage can either positively or negatively impact on the refolding of an adjacent domain. Furthermore, analysis of the NMR data for EGF3-4 reveals the expected interdomain NOEs that are characteristic of an extended arrangement of calcium-binding EGF domains and a similar average [(1)H]-(15)N heteronuclear NOE value for each of the two domains. These results provide the first data in support of protein S EGF3-4 adopting the same extended domain orientation as observed for the functionally distinct proteins fibrillin-1 and the low-density lipoprotein receptor. The results also have important implications for future studies, particularly when a dissection approach is used, of tandem EGF domains from protein S and other proteins.  相似文献   

17.
Streptococcus pneumoniae is a major human pathogen that causes high mortality and morbidity rates and has developed resistance to many antibiotics. The genome of S. pneumoniae has recently been completely sequenced revealing many genes encoding hypothetical proteins of unknown function. We have found that the gene encoding one such conserved protein, SP14.3, is essential for growth of S. pneumonia. Since it is essential, SP14.3 represents a potential target for drug discovery. Here, we describe the three-dimensional solution structure of SP14.3 as determined by NMR spectroscopy. The structure consists of two domains each with an alpha/beta-fold. The N-terminal domain contains two alpha-helices and a three-stranded beta-sheet, while the C-terminal domain is composed of one alpha-helix and a five-stranded beta-sheet. The N-terminal domain of the protein contains a highly negatively charged surface and resembles the fold of the N-terminal domain of Thermus thermophilus ribosomal protein S3. The C-terminal domain has a protein fold similar to human small nuclear ribonucleoprotein Sm D3 and Haloarcula marismortui ribosomal protein L21E. The two domains of the protein tumble in solution overall as a whole with an overall molecular rotational correlation time (tau(m)) of 12.9 ns at 25 degrees C. The relative orientation of the two domains is not defined by the nuclear Overhauser effect data. Indeed, residual dipolar couplings and the structure calculations indicate that the relative orientation of the two domains is not rigidly oriented with respect to one another in solution.  相似文献   

18.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

19.
In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on Ca(2+)-bound S100B was examined further using NMR spectroscopy and site-directed mutagenesis. Specifically, ITC measurements of S100B mutants (helix 1, H15A and H25A; helix 4, C84A, H85A, and H90A) were found to bind Zn(2+) with lower affinity than wild-type S100B (from 2- to >25-fold). Thus, His-15, His-25, Cys-84, His-85, and perhaps His-90 of S100B are involved in coordinating Zn(2+), which was confirmed by NMR spectroscopy. Previous studies indicate that the binding of Zn(2+) enhances calcium and target protein-binding affinities, which may contribute to its biological function. Thus, chemical shift perturbations observed here for residues in both EF-hand domains of S100B during Zn(2+) titrations could be detecting structural changes in the Ca(2+)-binding domains of S100B that are pertinent to its increase in Ca(2+)-binding affinity in the presence of Zn(2+). Furthermore, Zn(2+) binding causes helix 4 to extend by one full turn when compared to Ca(2+)-bound S100B. This change in secondary structure likely contributes to the increased binding affinity that S100B has for target peptides (i.e., TRTK peptide) in the presence of Zn(2+).  相似文献   

20.
We have directly assigned the 1H NMR corresponding to the cysteinyl protons, the slowly exchangeable protons, and the aromatic ring protons in the 1H NMR spectrum of Clostridium acidi-urici ferredoxin by isotopic labeling and 13C NMR decoupling techniques. We also show that the resonance pattern in the 8- to 20-ppm (from 2,2-dimethyl-2-sialapentanesulfonic acid) region of the 1H NMR spectra of oxidized Clostridium acidi-urici, Clostridium pasteurianum, Clostridium perfringens, and Peptococcus aerogenes ferredoxins are very similar, and we assign the resonances in this region by analogy with the spectrum of C. acidi-urici ferredoxin. The 1H NMR spectra of the beta protons of the cysteinyl residues of these ferredoxins differ, however, from the 1H NMR spectra of equivalent beta protons of the methylene carbon atoms bonded via a sulfur atom to [4Fe-4S] clusters in synthetic inorganic analogues. In the spectra of the synthetic compounds, the beta protons appear as a single resonance shifted 10 ppm from its unbonded reference position. In the spectra of oxidized clostridial ferredoxins, the cysteinyl beta protons appear as a series of at least eight resolved resonances with shifts that range from 6 to 14 ppm, relative to the free amino acid resonance position. This difference in the spectra of the protein and the synthetic compounds probably results from the fact that the equivalent beta protons of the synthetic compounds are not constrained and are free to rotate and thus assume the same average orientation with respect to the [4Fe-4S] cluster. The shift pattern in the 9- to 14-ppm region is identical in three different clostridial ferredoxins. This suggests that the molecular environments of the corresponding cysteinyl residues are identical. Significant differences in the resonance positions occur, however, in the 14- to 18-ppm region, suggesting that the physical environments of these cysteinyl residues differ. This may reflect differences in the orientation of the corresponding cysteinyl residues relative to the [4Fe-4S] clusters or differences in charge density at the cysteinyl beta protons or both. The slowly exchangeable protons were identified by comparing the 1H NMR spectra of ferredoxins reconstituted in H2O and 2H2O. The remaining resonances in the 8- to 20-ppm region were assigned to each of the 2 tyrosyl residues in C. acidi-urici ferredoxin. This was done by comparing the 1H NMR spectra of C. acidi-urici [(3',5'-2H2)Tyr]ferredoxin and C. acidi-urici [PHE2]ferredoxin with that of C. acidi-urici native ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号